Neuro-Symbolic Artificial Intelligence
Chapter 8
Neuro-Symbolic Programming

Nils Holzenberger

April 8, 2024
Outline

1. End-to-end Differentiable Proving

2. Probabilistic Soft Logic
Outline

1. End-to-end Differentiable Proving

2. Probabilistic Soft Logic
End-to-End Differentiable Proving

Tim Rocktäschel
University of Oxford
tim.rocktaschel@cs.ox.ac.uk

Sebastian Riedel
University College London & Bloomsbury AI
s.riedel@cs.ucl.ac.uk

Rocktäschel & Riedel, End-to-end Differentiable Proving, NIPS 2017
The problem

Inconsistent KBs

country("Austria").
capitalOf("Austria", "Vienna").
city("Wien").
country("Switzerland").
nearby(Cap1, Cap2) :-
capital(Ctr1, Cap1), capital(Ctr2, Cap2),
nearby(Ctr1, Ctr2), city(Cap1), city(Cap2),
country(Ctr1), country(Ctr2).

?- nearby("Switzerland", "Austria").

https://github.com/mledoze/countries
The solution

- Distinct symbols represent the same entities
 Österreich, Oesterreich, Austria, Autriche \rightarrow Austria
The solution

- Distinct symbols represent the same entities
 Österreich, Oesterreich, Austria, Autriche → Austria

- Soft, parametric unification u_θ:
 - anything can unify with anything, e.g. Österreich with Austria
 - but every unification incurs a cost
 - as we go through the SLD tree, we keep the proofs with highest scores
The solution

- Distinct symbols represent the same entities
 Österreich, Oesterreich, Austria, Autriche → Austria

- Soft, parametric unification u_θ:
 - anything can unify with anything, e.g. Österreich with Austria
 - but every unification incurs a cost
 - as we go through the SLD tree, we keep the proofs with highest scores

- In detail:
 - Two variables $u_\theta(X, Y) \rightarrow$ score of 1 and $X=Y$
 - A variable and a constant $u_\theta(X, c) \rightarrow$ score of 1 and $X=c$
 - Two constants $u_\theta(a, b) \rightarrow$ score of $\exp(-||\theta_a - \theta_b||)$
The solution

- Distinct symbols represent the same entities
 Österreich, Oesterreich, Austria, Autriche → Austria

- Soft, parametric unification u_θ:
 - anything can unify with anything, e.g. Österreich with Austria
 - but every unification incurs a cost
 - as we go through the SLD tree, we keep the proofs with highest scores

- In detail:
 - Two variables $u_\theta(X, Y) \rightarrow$ score of 1 and $X=Y$
 - A variable and a constant $u_\theta(X, c) \rightarrow$ score of 1 and $X=c$
 - Two constants $u_\theta(a, b) \rightarrow$ score of $\exp(-||\theta_a - \theta_b||)$

- Every constant and every predicate a is represented by a high-dimensional, learnable vector θ_a

- The idea is that the vectors Österreich, Oesterreich, Austria, Autriche will end up close together

Rocktäschel & Riedel, *End-to-end Differentiable Proving*, NIPS 2017
Extensions

- Started as a PhD thesis in 2017
- Has been extended for
 - scalability (speed of inference + size of KB) \(^1\)
 - use directly on natural language \(^2\)
 - producing explanations \(^3\)

\(^1\) Minervini et al, *Towards Neural Theorem Proving at Scale*, NAMPI@ICML 2018

Minervini et al, *Differentiable Reasoning on Large Knowledge Bases and Natural Language*, Knowledge Graphs for eXplainable Artificial Intelligence 2020

\(^3\) Bianchi et al, *Knowledge Graph Embeddings and Explainable AI*, Knowledge Graphs for eXplainable Artificial Intelligence 2020
Outline

1. End-to-end Differentiable Proving

2. Probabilistic Soft Logic
The problem

- For some problems, we can leverage structure, e.g. social and biological networks
- For some problems, we can leverage large amounts of data, e.g. the Web
- Structured models don’t scale very well, so how do we leverage both?
The solution

Hinge-Loss Markov Random Fields and Probabilistic Soft Logic

Stephen H. Bach
Computer Science Department
Stanford University
Stanford, CA 94305, USA

Matthias Broecheler
DataStax

Bert Huang
Computer Science Department
Virginia Tech
Blacksburg, VA 24061, USA

Lise Getoor
Computer Science Department
University of California, Santa Cruz
Santa Cruz, CA 95064, USA

Editor: Luc De Raedt

The solution

- Rewrite Prolog-like rules into CNF, interpret them as objective functions
- Relax the resulting SAT problem using soft logic
- Use convex optimization to find the truth values (in [0,1]) for each grounded formula
Example

Knowledge base:

\[a(X) \leftarrow b(X). \]
\[a(c1). \]
\[b(c2). \]

Groundings + truth values:

\[a(c1) \quad x_1 = 1 \]
\[a(c2) \quad x_2 \in [0, 1] \]
\[b(c1) \quad x_3 \in [0, 1] \]
\[b(c2) \quad x_4 = 1 \]
Example

Knowledge base:

\[a(X) \leftarrow b(X). \]
\[a(c1). \]
\[b(c2). \]

Groundings + truth values:

\[a(c1) \quad x_1 = 1 \]
\[a(c2) \quad x_2 \in [0, 1] \]
\[b(c1) \quad x_3 \in [0, 1] \]
\[b(c2) \quad x_4 = 1 \]

Turning the rule into an objective:

- \[a(c1) \leftarrow b(c1) \]
- \[a(c1) \lor \neg b(c1) \]
- \[\min\{1, x_1 + (1 - x_3)\} \text{ using Łukasiewicz logic} \]

Full objective:

\[\text{argmax } \min\{1, x_1 + (1 - x_3)\} + \min\{1, x_2 + (1 - x_4)\} \]
\[x_1, x_2, x_3, x_4 \]
Example

Knowledge base:

\[a(X) \leftarrow b(X). \]
\[a(c1). \]
\[b(c2). \]

Turning the rule into an objective:

\[a(c1) \leftarrow b(c1) \]
\[a(c1) \lor \neg b(c1) \]
\[\min\{1, x_1 + (1 - x_3)\} \text{ using Łukasiewicz logic} \]

Full objective:

\[\arg\max_{x_1, x_2, x_3, x_4} \min\{1, x_1 + (1 - x_3)\} + \min\{1, x_2 + (1 - x_4)\} \]

Actual objective: \[\arg\max_{x_2, x_3} \min\{1, 2 - x_3\} + \min\{1, x_2\} \]
Example

Knowledge base:

\[a(X) \leftarrow b(X). \]
\[a(c_1). \]
\[b(c_2). \]

Groundings + truth values:

- \[a(c_1) \quad x_1 = 1 \]
- \[a(c_2) \quad x_2 \in [0, 1] \]
- \[b(c_1) \quad x_3 \in [0, 1] \]
- \[b(c_2) \quad x_4 = 1 \]

Turning the rule into an objective:

- \[a(c_1) \leftarrow b(c_1) \]
- \[a(c_1) \lor \neg b(c_1) \]
- \[\min\{1, x_1 + (1 - x_3)\} \text{ using } \Lukasiewicz \text{ logic} \]

Full objective:

\[\arg \max_{x_1, x_2, x_3, x_4} \min\{1, x_1 + (1 - x_3)\} + \min\{1, x_2 + (1 - x_4)\} \]

Actual objective: \[\arg \max_{x_2, x_3} \min\{1, 2 - x_3\} + \min\{1, x_2\} \]

\[\rightarrow x_2 = 1 \text{ and the value of } x_3 \text{ can be anywhere between 0 and 1.} \]
Extensions

The package is called *Probabilistic Soft Logic (PSL)*

- It is well documented
 - Website
 - Talks and tutorials
 - Wikipedia page
- It has been extended for scalability etc

4 https://psl.linqs.org/

Extensions

It has been used in lots of applications

- Drug-drug interaction \(^6\)
- Entity resolution \(^7\)
- Recommender systems \(^8\)
- Stance prediction in online debates \(^9\)
- Knowledge graph inference \(^10\)

\(^10\) Pujara et al, *Knowledge Graph Identification*, ISWC 2013