Neuro-Symbolic Artificial Intelligence
Chapter 7
Statistical Machine Learning with ProbLog

Nils Holzenberger

April 2, 2024
Outline

1. ProbLog
2. Statistical learning
3. Deep ProbLog
Outline

1. ProbLog
2. Statistical learning
3. Deep ProbLog
Sampling programs...?

\begin{verbatim}
l(X,Y):- f(X,Y).
0.8::l(X,Y):- f(X,Z), l(Z,Y).
0.3::f(john,mary).
0.7::f(mary,pedro).
0.4::f(mary,tom).
0.6::f(pedro,tom).
\end{verbatim}
Sampling programs...?

\(l(X,Y) :- \ f(X,Y). \)
0.8:: \(l(X,Y) :- f(X,Z), l(Z,Y). \)
0.3:: \(f(john,mary). \)
0.7:: \(f(mary,pedro). \)
0.4:: \(f(mary,tom). \)
0.6:: \(f(pedro,tom). \)

\(l(X,Y) :- \ f(X,Y). \)
\(l(X,Y) :- f(X,Z), l(Z,Y). \)
\(f(mary,tom). \)
\(f(pedro,tom). \)

Probability of sample:
\[1 \times .8 \times (1-.3) \times (1-.7) \times .4 \times .6 \approx .04 \]
Sampling programs...?

\[l(X,Y) :\sim f(X,Y). \]

\[0.8 :\sim l(X,Y) :\sim f(X,Z), l(Z,Y). \]

\[0.3 :\sim f(john, mary). \]

\[0.7 :\sim f(mary, pedro). \]

\[0.4 :\sim f(mary, tom). \]

\[0.6 :\sim f(pedro, tom). \]

Most probable program:

\[l(X,Y) :\sim f(X,Y). \]

\[l(X,Y) :\sim f(X,Z), l(Z,Y). \]

\[f(mary, pedro). \]

\[f(pedro, tom). \]

Probability of sample: \[1 \times 0.8 \times (1 - 0.3) \times 0.7 \times (1 - 0.4) \times 0.6 \approx 0.14 \]
Sampling programs...?

\[l(X,Y) :\!- \!f(X,Y). \]
\[0.8:: l(X,Y) :\!- \!f(X,Z), \!l(Z,Y). \]
\[0.3:: f(john,mary). \]
\[0.7:: f(mary,pedro). \]
\[0.4:: f(mary,tom). \]
\[0.6:: f(pedro,tom). \]

Most probable program:

\[l(X,Y) :\!- \!f(X,Y). \]
\[l(X,Y) :\!- \!f(X,Z), \!l(Z,Y). \]
\[f(mary,pedro). \]
\[f(pedro,tom). \]

Probability of sample:
\[1 \times .8 \times (1 - .3) \times .7 \times (1 - .4) \times .6 \approx .14 \]
Sampling programs...?

\[l(X,Y) :- f(X,Y). \]
\[0.8 : l(X,Y) :- f(X,Z), l(Z,Y). \]
\[0.3 : f(john,mary). \]
\[0.7 : f(mary,pedro). \]
\[0.4 : f(mary,tom). \]
\[0.6 : f(pedro,tom). \]

Probability of this sample?

\[l(X,Y) :- f(X,Z), l(Z,Y). \]
\[f(mary,pedro). \]
\[f(pedro,tom). \]
Sampling programs...?

\[\text{l}(X,Y) :- f(X,Y). \]
\[0.8 :: \text{l}(X,Y) :- f(X,Z), \text{l}(Z,Y). \]
\[0.3 :: f(\text{john}, \text{mary}). \]
\[0.7 :: f(\text{mary}, \text{pedro}). \]
\[0.4 :: f(\text{mary}, \text{tom}). \]
\[0.6 :: f(\text{pedro}, \text{tom}). \]

Probability of this sample?

\[\text{l}(X,Y) :- f(X,Z), \text{l}(Z,Y). \]
\[f(\text{mary}, \text{pedro}). \]
\[f(\text{pedro}, \text{tom}). \]

Probability of sample: \(0 \times \ldots = 0 \)
Sampling programs

\[T = [(w_1, c_1), (w_2, c_2) \ldots] \] a ProbLog program

Pseudo-code to sample Prolog programs from \(T \):

```python
def sample(T):
    import random
    output = []
    for w, c in T:
        theta = random.rand()
        if w > theta:
            output.append(c)
    return output
```

You can do this with `prolog sample model.pl`: it will sample Prolog programs and evaluate the result of the queries in `model.pl`.
evidence(a). vs 1::a.

See fruit.pl

.5::happy(X) :- X=bob; X=alice.
happy(bob) :- fruit.
happy(alice) :- cake.
.3::cake ; .7::fruit.
ProbLog

Negative rules

.5::happy.
.3::happy :- fun_class.
.7::\+happy :- raining.
.9::\+happy :- school_test.
.1::fun_class.
.05::school_test.
.2::raining.

A sample is a Prolog program; but what is \+happy :- raining. in Prolog??
Negative rules

.5::happy.
.3::happy :- fun_class.
.7::\+happy :- raining.
.9::\+happy :- school_test.
.1::fun_class.
.05::school_test.
.2::raining.

Draw a sample:

happy.
happy :- fun_class.
\+happy :- raining.
raining.
Negative rules

.5::happy.
.3::happy :- fun_class.
.7::\+happy :- raining.
.9::\+happy :- school_test.
.1::fun_class.
.05::school_test.
.2::raining.

Draw a sample:

happy.
happy :- fun_class.
\+happy :- raining.
\+happy :- school_test.
fun_class.
school_test.
raining.

A sample is a Prolog program; but what is \+happy :- raining. in Prolog??
Negative rules

.5::happy.
.3::happy :- fun_class.
.7::\+happy :- raining.
.9::\+happy :- school_test.
.1::fun_class.
.05::school_test.
.2::raining.

Under the hood, ProbLog adds a new rule to each sample:

happy :- happy_p, \+ happy_n.
Negative rules

Under the hood, ProbLog adds a new rule to each sample:

\[
\text{happy} \leftarrow \text{happy}_p, \neg \text{happy}_n.
\]

Previous sample becomes:

\[
\begin{align*}
\text{happy}_p.
\text{happy}_p & \leftarrow \text{fun}_\text{class}.
\text{happy}_n & \leftarrow \text{raining}.
\text{raining}.
\text{happy} & \leftarrow \text{happy}_p, \neg \text{happy}_n.
\text{fun}_\text{class}.
\text{school}_\text{test}.
\text{raining}.
\end{align*}
\]

Now it’s a valid Prolog program.
SLD tree

R1 \(l(X,Y) :- \ f(X,Y) \).

R2 \(0.8::l(X,Y) :- \ f(X,Z), \ l(Z,Y) \).

R3 \(0.5::f(john,mary) \).

R4 \(0.5::f(mary,pedro) \).

R5 \(0.5::f(mary,tom) \).

R6 \(0.5::f(pedro,tom) \).
Query: \(l(\text{john}, \text{tom}) \)

\[
\begin{align*}
R1 &:\quad l(X,Y) :- f(X,Y). \\
R2 &:\quad 0.8 :: l(X,Y) :- f(X,Z), l(Z,Y). \\
R3 &:\quad 0.5 :: f(\text{john}, \text{mary}). \\
R4 &:\quad 0.5 :: f(\text{mary}, \text{pedro}). \\
R5 &:\quad 0.5 :: f(\text{mary}, \text{tom}). \\
R6 &:\quad 0.5 :: f(\text{pedro}, \text{tom}). \\
\end{align*}
\]

\[Q = (R1 \land R2 \land R3 \land R5) \lor (R1 \land R2 \land R3 \land R4 \land R6)\]

Run the query \(l(j,t) \) with the Prolog trace. The Prolog solver will traverse this tree depth-first.

De Raedt et al, ProbLog: A Probabilistic Prolog (...) , IJCAI 2007
Outline

1 ProbLog

2 Statistical learning

3 Deep ProbLog
Poker dice

From Wikipedia, the free encyclopedia

Poker dice are dice which, instead of having number pips, have representations of playing cards upon them. Poker dice have six sides, one each of an Ace, King, Queen, Jack, 10, and 9, and are used to form a poker hand.

Each variety of poker dice varies slightly in regard to suits, though the ace of spades is almost universally represented. 9♣ and 10♦ are frequently found, while face cards are traditionally represented not by suit, but instead by color: red for kings, green for queens and blue for jacks. Manufacturers have not standardized the colors of the face sides. The game can also be played with ordinary dice.

As a game

https://en.wikipedia.org/wiki/Poker_dice
Poker dice

- Roll 5 dice
- How many possible outcomes?
Poker dice

- Roll 5 dice
- How many possible outcomes? $6^5 = 7776$

<table>
<thead>
<tr>
<th>Name</th>
<th>Example</th>
<th>Number of combinations</th>
<th>Probability (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One pair</td>
<td>5 5 3 4 1</td>
<td>3600</td>
<td>46.30</td>
</tr>
<tr>
<td>Two pair</td>
<td>6 6 3 3 1</td>
<td>1800</td>
<td>23.15</td>
</tr>
<tr>
<td>Three of a kind</td>
<td>4 4 5 1 4</td>
<td>1200</td>
<td>15.43</td>
</tr>
<tr>
<td>Straight</td>
<td>2 3 4 5 6</td>
<td>240</td>
<td>3.09</td>
</tr>
<tr>
<td>Full house</td>
<td>1 1 1 5 5</td>
<td>300</td>
<td>3.86</td>
</tr>
<tr>
<td>Four of a kind</td>
<td>3 3 3 3 2</td>
<td>150</td>
<td>1.93</td>
</tr>
<tr>
<td>Five of a kind</td>
<td>6 6 6 6 6</td>
<td>6</td>
<td>0.08</td>
</tr>
<tr>
<td>Nothing</td>
<td>1 2 3 4 6</td>
<td>480</td>
<td>6.17</td>
</tr>
</tbody>
</table>

See poker-dice.pl

https://en.wikipedia.org/wiki/Poker_dice
Poker dice – sampling

See poker-dice.pl

Run problog sample poker-dice.pl -N 5

Run problog sample poker-dice.pl --estimate -N 78 with multiple copies
Poker dice – Biased dice

My opponent uses biased dice, can I estimate the bias?

problog lfi \n poker-dice.pl poker-dice-samples.pl \n -v -O learned-model.pl
Poker dice – Biased dice

My opponent uses biased dice, can I estimate the bias?

```
problog lfi
   poker-dice.pl poker-dice-samples.pl
   -v -O learned-model.pl
```

How does ProbLog determine the probabilities of the dice?
Poker dice – Biased dice

My opponent uses biased dice, can I estimate the bias?

```
problog lfi \
  poker-dice.pl poker-dice-samples.pl \
  -v -O learned-model.pl
```

How does ProbLog determine the probabilities of the dice? → *Maximum likelihood estimation*
Statistical learning

Example: probabilities in Natural Language Processing

Step 1. Express the quantities of interest as random variables.

eg spam classification:

Experiment = I receive an email

\(X = \) the email I receive (it’s a string)

\(Y = 1 \) if the email is spam, 0 otherwise
Example: probabilities in Natural Language Processing

\[X = \text{the email I receive (it’s a string)} \]

\[Y = 1 \text{ if the email is spam, } 0 \text{ otherwise} \]

\[p(y|x) \quad \text{Given that I received email } x, \text{ is it spam?} \]
\[p(y) \quad \text{How probable is it that an email I receive should be spam?} \]
\[p(x) \quad \text{How probable is it that I should receive email } x? \]
\[p(x|y) \quad \text{How probable is it that I should receive email } x, \text{ assuming that it’s spam/not spam?} \]
Poker dice

My opponent uses biased dice, can I estimate the bias?

- What is the experiment?
Poker dice

My opponent uses biased dice, can I estimate the bias?

- What is the experiment? rolling 5 dice
- What are the random variables?
Poker dice

My opponent uses biased dice, can I estimate the bias?

- What is the experiment?
 rolling 5 dice
- What are the random variables?
 the result of each die: X_1, X_2, X_3, X_4, X_5 with $X_i \in \{1, 2, 3, 4, 5, 6\}$
- What probability do I want to estimate?
Poker dice

My opponent uses biased dice, can I estimate the bias?

- What is the experiment? rolling 5 dice
- What are the random variables? the result of each die: X_1, X_2, X_3, X_4, X_5 with $X_i \in \{1, 2, 3, 4, 5, 6\}$
- What probability do I want to estimate? $p(X_i = j)$ for $i \in \{1, 2, 3, 4, 5\}$ and $j \in \{1, 2, 3, 4, 5, 6\}$.
- What are the parameters of the probability distribution?
Poker dice

My opponent uses biased dice, can I estimate the bias?

- What is the experiment?
 rolling 5 dice

- What are the random variables?
 the result of each die: \(X_1, X_2, X_3, X_4, X_5 \) with \(X_i \in \{1, 2, 3, 4, 5, 6\} \)

- What probability do I want to estimate?
 \(p(X_i = j) \) for \(i \in \{1, 2, 3, 4, 5\} \) and \(j \in \{1, 2, 3, 4, 5, 6\} \).

- What are the parameters of the probability distribution?
 \(\theta_i \), the probability that a die lands on \(i \) (this distribution is the same for all dice, that’s an assumption we’re making)
We never observe the probability distribution that we want to estimate. But we do observe samples from that probability distribution. And we can compute the probability of the samples as a function of the parameters of our model.

Probability of observing the roll $[1,3,5,1,2]$ is $p(X_1 = 1)p(X_2 = 3)p(X_3 = 5)p(X_4 = 1)p(X_5 = 2) = \theta_1 \theta_3 \theta_5 \theta_1 \theta_2 = \theta_1^2 \theta_2 \theta_3 \theta_5$

Probability of observing the roll $[3,5,1,5,1]$ is $\theta_1^2 \theta_3 \theta_5^2$

Probability of observing the roll $[4,5,4,6,3]$ is $\theta_3 \theta_4^2 \theta_5 \theta_6$
We have a set of samples from our target distribution:

\[S = \{o_1, o_2, \ldots, o_n\} \text{ where } \forall i, o_i = [x_{i,1}, x_{i,2}, x_{i,3}, x_{i,4}, x_{i,5}] \]
We have a set of samples from our target distribution:
\[S = \{o_1, o_2, \ldots, o_n\} \text{ where } \forall i, o_i = [x_{i,1}, x_{i,2}, x_{i,3}, x_{i,4}, x_{i,5}] \]

- We can express the probability of drawing \(S \) from the distribution, given our parameters \(\theta \):
Maximum likelihood

- We have a set of samples from our target distribution:
 \[S = \{o_1, o_2, ..., o_n\} \text{ where } \forall i, o_i = [x_{i,1}, x_{i,2}, x_{i,3}, x_{i,4}, x_{i,5}] \]

- We can express the probability of drawing \(S \) from the distribution, given our parameters \(\theta \):

\[
p(S|\theta) = p(o_1, o_2, ..., o_n|\theta) = \prod_{i=1}^{n} p(o_i|\theta) \quad \text{where } p(S|\theta) \text{ is the likelihood of } S
\]

what assumption are we making here?
Maximum likelihood

We have a set of samples from our target distribution:
$S = \{o_1, o_2, ..., o_n\}$ where $\forall i, o_i = [x_{i,1}, x_{i,2}, x_{i,3}, x_{i,4}, x_{i,5}]$

- We can express the probability of drawing S from the distribution, given our parameters θ:

$$p(S|\theta) = p(o_1, o_2, ..., o_n|\theta) = \prod_{i=1}^{n} p(o_i|\theta)$$

$p(S|\theta)$ is the likelihood of S

what assumption are we making here? that the samples are independent
Maximum likelihood

- We have a set of samples from our target distribution: $S = \{o_1, o_2, ..., o_n\}$ where $\forall i$, $o_i = [x_{i,1}, x_{i,2}, x_{i,3}, x_{i,4}, x_{i,5}]$

- We can express the probability of drawing S from the distribution, given our parameters θ:

$$p(S|\theta) = p(o_1, o_2, ..., o_n|\theta) = \prod_{i=1}^{n} p(o_i|\theta)$$

$p(S|\theta)$ is the likelihood of S.

what assumption are we making here? that the samples are independent

$$p(o_i) = p(x_{i,1}, x_{i,2}, x_{i,3}, x_{i,4}, x_{i,5}|\theta) =$$
We have a set of samples from our target distribution: $S = \{o_1, o_2, ..., o_n\}$ where $\forall i, o_i = [x_{i,1}, x_{i,2}, x_{i,3}, x_{i,4}, x_{i,5}]$

- We can express the probability of drawing S from the distribution, given our parameters θ:

$$p(S|\theta) = p(o_1, o_2, ..., o_n|\theta) = \prod_{i=1}^{n} p(o_i|\theta)$$

$p(S|\theta)$ is the likelihood of S

what assumption are we making here? that the samples are independent

$$p(o_i) = p(x_{i,1}, x_{i,2}, x_{i,3}, x_{i,4}, x_{i,5}|\theta) = \theta_{x_{i,1}} \theta_{x_{i,2}} \theta_{x_{i,3}} \theta_{x_{i,4}} \theta_{x_{i,5}}$$
Maximum likelihood

- We have a set of samples from our target distribution:
 \[S = \{o_1, o_2, ..., o_n\} \] where \(\forall i, o_i = [x_{i,1}, x_{i,2}, x_{i,3}, x_{i,4}, x_{i,5}] \)

- We can express the probability of drawing \(S \) from the distribution, given our parameters \(\theta \):

\[
p(S|\theta) = p(o_1, o_2, ..., o_n|\theta) = \prod_{i=1}^{n} p(o_i|\theta)
\]

\(p(S|\theta) \) is the **likelihood** of \(S \)

what assumption are we making here? that the samples are independent

\[
p(o_i) = p(x_{i,1}, x_{i,2}, x_{i,3}, x_{i,4}, x_{i,5}|\theta) = \theta_{x_{i,1}} \theta_{x_{i,2}} \theta_{x_{i,3}} \theta_{x_{i,4}} \theta_{x_{i,5}}
\]

\[
p(S|\theta) = \prod_{i=1}^{n} \theta_{x_{i,1}} \theta_{x_{i,2}} \theta_{x_{i,3}} \theta_{x_{i,4}} \theta_{x_{i,5}} = \prod_{i=1}^{n} f_i(\theta)
\]
We have a set of samples from our target distribution:
\[S = \{o_1, o_2, ..., o_n\} \text{ where } \forall i, o_i = [x_{i,1}, x_{i,2}, x_{i,3}, x_{i,4}, x_{i,5}] \]

The likelihood of \(S \) is
\[p(S|\theta) = \prod_{i=1}^{n} f_i(\theta) \]

Surely the parameters that best explain the samples from the distribution must be close to the real distribution, so let’s find

\[\theta^* = \arg\max_{\theta} p(S|\theta) \]

This is the maximum likelihood estimation of \(\theta \)
When you run `problog lfi model.pl samples.pl` what happens?

- `samples.pl` contains the samples from earlier: observations of outcomes of experiments
- `model.pl` contains a probabilistic model that can be used to compute the probability of the observations – where some probabilities are learnable parameters
When you run `problog lfi model.pl samples.pl` what happens?

- Learnable parameters are initialized randomly
- ProbLog tries to maximize the probability of the samples, by modifying the values of the learnable parameters. How? Using *expectation maximization*:
 - For each sample, ProbLog computes the most probable program that explains the sample
 - For each clause, ProbLog counts how many times it appeared in the programs derived above, and sets the probability of the clause as the number of times it was used divided by the number of the times it could have been used
- There are other ways of maximizing likelihood, like gradient descent
Outline

1. ProbLog
2. Statistical learning
3. Deep ProbLog
I want to build an image recognizer that can recognize images that are cute.

I have 100 images labeled with whether or not they are cute.

Manual inspection of the images shows the following:

\[
\text{cute(Image)} :\text{- dog(Image, Dog), small(Image, Dog), fluffy(Image, Dog).}
\]

\[
\text{cute(Image)} :\text{- cat(Image, Cat), fluffy(Image, Cat).}
\]

An image is cute if it has a small fluffy dog on it, or it has a fluffy cat on it.

So really I just need to build 4 simpler image recognizers: \text{dog, cat, small, fluffy.}
Trade secrets

I want to build a system that can read a legal case and tell me whether or not someone has done trade secret misappropriation.

Legal experts sent me this:

“Trade secret” means information, [...] that:

(i) derives independent economic value, [...] from not being generally known to, and not being readily ascertainable by proper means [...] and

(ii) is the subject of efforts that are reasonable under the circumstances to maintain its secrecy.

One [...] is liable [for trade secret misappropriation if]

(a) he discovered the secret by improper means, or

(b) his disclosure or use constitutes a breach of confidence [...]
Trade secrets

I want to build a system that can read a legal case and tell me whether or not someone has done trade secret misappropriation.

\[
\text{trade_secret_misappropriation}(X) :- \\
\quad \text{info_trade_secret}(X), \\
\quad \text{info_misappropriated}(X).
\]

\[
\text{info_trade_secret}(X) :- \\
\quad \text{information_valuable}(X), \\
\quad \text{maintain_secrecy}(X).
\]

\[
\text{info_misappropriated}(X) :- \\
\quad \text{info_used}(X), \\
\quad \text{confidential_relationship}(X).
\]

\[
\text{info_misappropriated}(X) :- \text{improper_means}(X).
\]

→ I need 5 simple binary classifiers.
This is the idea behind Deep ProbLog: certain predicates are best modeled with neural networks

- \texttt{dog(Image, Dog)}: whether the input \texttt{Image} contains a dog in the region \texttt{Dog}
- \texttt{confidential_relationship(X)}: whether a confidential relationship existed between the parties in case \texttt{X}

Neural networks are attached to predicates:

- \texttt{nn(rnn, [X])::confidential_relationship(X)}.
- \texttt{nn(cnn, [Image, Dog])::dog(Image,Dog) :- between(1,9,Dog)}.

Parameters of the neural network are learned with the same \textit{maximum likelihood estimation}
Digit addition

Simple problem:

- Input is a pair of black-and-white images, with digits on them
- Output is the sum of the two digits

Manhaeve et al, DeepProbLog: Neural Probabilistic Logic Programming, NeurIPS 2018
MNIST database http://yann.lecun.com/exdb/mnist/
Digit addition

- One way to do it is to learn a classifier mapping pairs of images to their sum: `classifier(Image1, Image2, Sum)`
- Another way is to decompose the problem and learn to classify each digit separately:

```
addition(Image1, Image2, Sum) :-
    digit(Image1, Digit1), digit(Image2, Digit2),
    Sum is Digit1+Digit2.
nn(cnn, [Img], Dgt, [0,1,2,3,4,5,6,7,8,9]):::digit(Img, Dgt).
```
Deep ProbLog

Digit addition

Does it work?

- Final accuracy
- Convergence speed
- Sample efficiency

Manhaeve et al, DeepProbLog: Neural Probabilistic Logic Programming, NeurIPS 2018
How it works

- Same as for ProbLog, write down the SLD tree, then the BDD
- Get a set of independent proofs to compute the correct answer’s probability
How it works

- Same as for ProbLog, write down the SLD tree, then the BDD
- Get a set of independent proofs to compute the correct answer’s probability i.e. the likelihood of the data
- Do gradient descent
Deep ProbLog

Example

- Get all ways of proving the observation, and maximize its probability
- This also encourages some wrong classifications
- With enough training data the right classification becomes a much better solution than wrong ones

Manhaeve et al, Neural probabilistic logic programming in DeepProbLog, Artif. Intel. 2021

(d) The AC for query addition(2, 1, 1).
Lab session

- Coin flipping
- Parameter learning in ProbLog
Next week

- Lecture (1:30pm-2:45pm)
 - Brief intro to other neuro-symbolic libraries
 - Review session prior to the exam
- Exam (3:15pm-4:15pm)
 - No documents allowed
 - No switched on devices allowed
 - Exams of past 3 years available on website