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Probabilistic programming

Problem

Sometimes it’s straightforward to determine the truth value of a
predicate

member(Element,List)
win(GameState), loss(GameState)

Sometimes not
is_cat(Image)
Sentiment analysis

?- Sentence="This is a great vacuum cleaner if
you're trying to ruin your carpet.",

sentiment(Sentence,Polarity).
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Probabilistic programming

Goal

Incorporate uncertainty into Prolog
Incorporate learnable parameters into Prolog

Statistical machine learning
Neural networks — see next lecture

Combine symbols (Prolog program) and neural networks
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Probabilistic programming

ProbLog

ProbLog = Prolog + probabilities

We introduce ProbLog which is — in a sense — the simplest probabilistic
extension of Prolog one can design.

De Raedt et al, ProbLog: A Probabilistic Prolog and Its Application in Link Discovery, IJCAI
2007
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Probabilistic programming

ProbLog

ProbLog is one of many probabilistic programming packages
As far as I know it is very principled, and enjoys many extensions

Approximate and exact inference
Plugins for Pytorch
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Probabilistic programming Atoms

Weather

Example weather.pl

Run queries
Assert evidence

Nils Holzenberger NeurSym-AI — ProbLog April 2, 2024 8 / 44



Probabilistic programming Predicates

Poker dice

Fair dice
Biased dice
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Probabilistic programming Predicates

Monty Hall paradox

The Monty Hall game
There are 3 doors. Behind one of them is a reward.
The player picks a door.
The game moderator opens a different door, revealing that there is no
reward behind it.
The player can choose to keep the door picked at the beginning, or to
pick the other closed door.
What is the best decision?

Example monty-hall.pl
First, code a door-picking game (1 turn)
Second, code the Monty Hall game
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Probabilistic programming Learning probabilities

Poker dice

Learning with ProbLog: problog lfi myprogram.pl myexamples.pl

Learning the probability of an opponent cheating
Learning the bias of the dice

Nils Holzenberger NeurSym-AI — ProbLog April 2, 2024 11 / 44



Probabilities

Outline

1 Probabilistic programming
Atoms
Predicates
Learning probabilities

2 Probabilities

3 ProbLog
Mechanics

Computing success probabilities
Options

Nils Holzenberger NeurSym-AI — ProbLog April 2, 2024 12 / 44



Probabilities

Probabilities

What is a probability?
I toss a coin. What is the probability it lands on tails?
I throw two dice. What is the probability of getting a double six?

A belief
Measurement of my belief that the coin will land on tails
The frequency of an outcome
Frequency of outcome if I toss the same coin 10,000 times
The ratio of monetary amounts people are willing to bet
Predictive markets — possibly the most practical definition

Nils Holzenberger NeurSym-AI — ProbLog April 2, 2024 13 / 44



Probabilities

Probabilities

What is a probability?
I toss a coin. What is the probability it lands on tails?
I throw two dice. What is the probability of getting a double six?

A belief
Measurement of my belief that the coin will land on tails
The frequency of an outcome
Frequency of outcome if I toss the same coin 10,000 times
The ratio of monetary amounts people are willing to bet
Predictive markets — possibly the most practical definition

Nils Holzenberger NeurSym-AI — ProbLog April 2, 2024 13 / 44



Probabilities

Random variables

A random variable is a function that maps the outcome of an experiment
to a value

Coin-flipping experiment:

X = { "the coin lands on heads" →X = 1,
"the coin lands on tails" →X = 0 }

Poker game:

Y = { "my opponent cheated" →Y = 1,
"my opponent did not cheat" →X = 0 }

Z = {"my opponent is dealt a royal flush" →Z = 1, ...}

We can reason about the probability of X = 1, noted p(X = 1)
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Probabilities

Random variables

Random variables are not random
Random variables are not variables
Random variables are functions
Random variables are deterministic
The randomness comes from the outcome
A random variable deterministically maps an outcome to a value

Adapted from Ryan Cotterell’s Introduction to NLP
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Probabilities

Why use probabilities in AI?

There is theory about how to estimate probabilities from data samples
They can efficiently model noisy processes

The process = the part of the mechanics we understand
The noise = the part we don’t understand

Probabilities can model deterministic processes
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Probabilities

Useful properties

Non-negativity ∀x ∈D , p(X = x)≥ 0 / ∀x ∈D , f (x)≥ 0
Sums to 1

∑
x∈D

p(X = x)= 1

Additivity If A⊂B then p(A)≤ p(B)

Joint probabilities p(X = x ,Y = y)
def= p({X = x}∩ {Y = y })

Marginalization p(X = x)= ∑
y∈Dy

p(X = x ,Y = y)

Conditional probabilities p(X = x |Y = y)
def= p(X=x ,Y=y)

p(Y=y)
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Probabilities

Example: probabilities in Natural Language Processing

Step 1. Express the quantities of interest as random variables.

eg spam classification:

Experiment = I receive an email

X = the email I receive (it’s a string)

Y = 1 if the email is spam, 0 otherwise
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Probabilities

Example: probabilities in Natural Language Processing

X = the email I receive (it’s a string)

Y = 1 if the email is spam, 0 otherwise

p(y |x) Given that I received email x , is it spam?
p(y) How probable is it that an email I receive should be spam?
p(x) How probable is it that I should receive email x?
p(x |y) How probable is it that I should receive email x , assuming

that it’s spam/not spam?

Step 2. How to compute p(y|x)? → next lecture
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ProbLog Mechanics

Probability distributions over Prolog programs

Experiment:
A ProbLog program is a set of Prolog clauses, each with a probability
(weight in [0,1])
We draw clauses from a ProbLog program, according to the
probabilities

Outcome: a set of clauses S

Random variable X : X = 1 if S ⊢G where G is a pre-defined query
In Prolog we wanted to know whether or not G succeeds. In ProbLog,
we get the probability that G succeeds — p(X = 1)
How do we compute p(X = 1)? We enumerate all programs and their
weights

De Raedt et al, ProbLog: A Probabilistic Prolog (...), IJCAI 2007

Nils Holzenberger NeurSym-AI — ProbLog April 2, 2024 21 / 44



ProbLog Mechanics

Probability distributions over Prolog programs

Experiment:
A ProbLog program is a set of Prolog clauses, each with a probability
(weight in [0,1])
We draw clauses from a ProbLog program, according to the
probabilities

Outcome: a set of clauses S

Random variable X : X = 1 if S ⊢G where G is a pre-defined query
In Prolog we wanted to know whether or not G succeeds. In ProbLog,
we get the probability that G succeeds — p(X = 1)
How do we compute p(X = 1)? We enumerate all programs and their
weights

De Raedt et al, ProbLog: A Probabilistic Prolog (...), IJCAI 2007

Nils Holzenberger NeurSym-AI — ProbLog April 2, 2024 21 / 44



ProbLog Mechanics

Probability distributions over Prolog programs

Experiment:
A ProbLog program is a set of Prolog clauses, each with a probability
(weight in [0,1])
We draw clauses from a ProbLog program, according to the
probabilities

Outcome: a set of clauses S

Random variable X : X = 1 if S ⊢G where G is a pre-defined query

In Prolog we wanted to know whether or not G succeeds. In ProbLog,
we get the probability that G succeeds — p(X = 1)
How do we compute p(X = 1)? We enumerate all programs and their
weights

De Raedt et al, ProbLog: A Probabilistic Prolog (...), IJCAI 2007

Nils Holzenberger NeurSym-AI — ProbLog April 2, 2024 21 / 44



ProbLog Mechanics

Probability distributions over Prolog programs

Experiment:
A ProbLog program is a set of Prolog clauses, each with a probability
(weight in [0,1])
We draw clauses from a ProbLog program, according to the
probabilities

Outcome: a set of clauses S

Random variable X : X = 1 if S ⊢G where G is a pre-defined query
In Prolog we wanted to know whether or not G succeeds. In ProbLog,
we get the probability that G succeeds — p(X = 1)

How do we compute p(X = 1)? We enumerate all programs and their
weights

De Raedt et al, ProbLog: A Probabilistic Prolog (...), IJCAI 2007

Nils Holzenberger NeurSym-AI — ProbLog April 2, 2024 21 / 44



ProbLog Mechanics

Probability distributions over Prolog programs

Experiment:
A ProbLog program is a set of Prolog clauses, each with a probability
(weight in [0,1])
We draw clauses from a ProbLog program, according to the
probabilities

Outcome: a set of clauses S

Random variable X : X = 1 if S ⊢G where G is a pre-defined query
In Prolog we wanted to know whether or not G succeeds. In ProbLog,
we get the probability that G succeeds — p(X = 1)
How do we compute p(X = 1)?

We enumerate all programs and their
weights

De Raedt et al, ProbLog: A Probabilistic Prolog (...), IJCAI 2007

Nils Holzenberger NeurSym-AI — ProbLog April 2, 2024 21 / 44



ProbLog Mechanics

Probability distributions over Prolog programs

Experiment:
A ProbLog program is a set of Prolog clauses, each with a probability
(weight in [0,1])
We draw clauses from a ProbLog program, according to the
probabilities

Outcome: a set of clauses S

Random variable X : X = 1 if S ⊢G where G is a pre-defined query
In Prolog we wanted to know whether or not G succeeds. In ProbLog,
we get the probability that G succeeds — p(X = 1)
How do we compute p(X = 1)? We enumerate all programs and their
weights

De Raedt et al, ProbLog: A Probabilistic Prolog (...), IJCAI 2007

Nils Holzenberger NeurSym-AI — ProbLog April 2, 2024 21 / 44



ProbLog Mechanics

Probability distributions over Prolog programs
A Prolog program L is a set {f1, ..., fm} where fi is a Prolog clause

A ProbLog program T is a set of Prolog clauses C = {c1, ...,cn} and a
function w that specifies each clause’s probability w(ci )

G is a clause whose probability we want to compute

p(L|T )= ∏
c∈L

w(c)
∏

c∈C\L
1−w(c)

Probability of program L drawn from T

p(G |L)= 1 if L⊢G else 0
Success probability of clause G given program L

p(G ,L|T )= p(G |L)p(L|T )
Probability of clause G and program L under T
p(G |T )= ∑

L⊂C
p(G ,L|T )

Probability of clause G under T
" We are abusing notation here

De Raedt et al, ProbLog: A Probabilistic Prolog (...), IJCAI 2007
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ProbLog Mechanics

Weather example

cloudy sunshine raining nice funny p(L)

T T T F T 0
T T F T F 0
T F T F F .3∗ .8= .24
T F F F F .3∗ .2= .06
F T T F T 0
F T F T F 0.7
F F T F F 0
F F F F F 0

The sum is 1
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ProbLog Mechanics

Weather example

Probability of cloudy: .3

cloudy sunshine raining nice funny p(L)

T T T F T 0
T T F T F 0
T F T F F .3∗ .8= .24
T F F F F .3∗ .2= .06
F T T F T 0
F T F T F 0.7
F F T F F 0
F F F F F 0
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ProbLog Mechanics

Weather example

Probability of nice: .7

cloudy sunshine raining nice funny p(L)

T T T F T 0
T T F T F 0
T F T F F .3∗ .8= .24
T F F F F .3∗ .2= .06
F T T F T 0
F T F T F 0.7
F F T F F 0
F F F F F 0
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ProbLog Mechanics

Weather example

Probability of funny: 0

cloudy sunshine raining nice funny p(L)

T T T F T 0
T T F T F 0
T F T F F .3∗ .8= .24
T F F F F .3∗ .2= .06
F T T F T 0
F T F T F 0.7
F F T F F 0
F F F F F 0

This is referred to as model counting
This has the same issues as using truth tables to determine tautologies
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ProbLog Mechanics

SLD tree

% If X is a friend of Y, then X likes Y:
l(X,Y):- f(X,Y).
% If there is Z such that X is friends with Z and Z likes Y,
% then there is a 80% chance that X likes Y
0.8::l(X,Y):- f(X,Z), l(Z,Y).
% john is friends with mary with probability .5
0.5::f(john,mary).
0.5::f(mary,pedro).
0.5::f(mary,tom).
0.5::f(pedro,tom).
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ProbLog Mechanics

SLD tree

R1 l(X,Y):- f(X,Y).

R2 0.8::l(X,Y):- f(X,Z), l(Z,Y).

R3 0.5::f(john,mary).

R4 0.5::f(mary,pedro).

R5 0.5::f(mary,tom).

R6 0.5::f(pedro,tom).
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ProbLog Mechanics

SLD tree

Query: l(john,tom)

l(j,t)

f(j,t)

fail

f(j,A),l(A,t)

l(m,t)

f(m,t)

success

f(m,B),l(B,t)

l(p,t)

f(p,t)

success

f(p,C),l(C,t)

l(t,t)

f(t,t)

fail

f(t,D),l(D,t)

fail

l(t,t)

f(t,t)

fail

f(t,E),l(E,t)

fail

R1
R2

R
3

R1

R
5

R2

R4

R1

R
6

R2

R
6

R1
R2

R5

R1
R2

R1 l(X,Y):- f(X,Y).
R2 0.8::l(X,Y):- f(X,Z), l(Z,Y).
R3 0.5::f(john,mary).
R4 0.5::f(mary,pedro).
R5 0.5::f(mary,tom).
R6 0.5::f(pedro,tom).

Q = (R2∧R3∧R1∧R5)∨
(R2∧R3∧R2∧R4∧R1∧R6)
Q = (R1∧R2∧R3∧R5)∨
(R1∧R2∧R3∧R4∧R6)

De Raedt et al, ProbLog: A
Probabilistic Prolog (...), IJCAI
2007
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ProbLog Mechanics

SLD tree

In summary:

Find all the ways of proving goal G
Do this efficiently by using the trace of the proof by resolution

p(Q|T )= p(
∨

b∈ proofs(Q)

∧
c∈ clauses(b)

c)

proofs(Q): the set of proofs for Q
clauses(b): the set of clauses that appear in proof b

→ but the paths are not disjoint, so in general p(q|T ) ̸= ∑
b∈pr(q)

∏
c∈cl(b)

p(c)

De Raedt et al, ProbLog: A Probabilistic Prolog (...), IJCAI 2007
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ProbLog Mechanics

Grounding

l(t,j) is grounded; l(t,X) is not grounded

In some neuro-symbolic programming paradigms, the engine
grounds all formulas, then
computes the truth values of grounded atoms.

The SLD tree only computes those groundings necessary for the proof
In the previous example, 2×4×4= 32 groundings:

l(j,j)
l(j,m)
l(j,p)
l(j,t)

l(m,j)
l(m,m)
l(m,p)
l(m,t)

l(p,j)
l(p,m)
l(p,p)
l(p,t)

l(t,j)
l(t,m)
l(t,p)
l(t,t)

f(j,j)
f(j,m)
f(j,p)
f(j,t)

f(m,j)
f(m,m)
f(m,p)
f(m,t)

f(p,j)
f(p,m)
f(p,p)
f(p,t)

f(t,j)
f(t,m)
f(t,p)
f(t,t)
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ProbLog Mechanics

Binary Decision Diagrams

Q = (R1∧R2∧R3∧R5)∨ (R1∧R2∧R3∧R4∧R6)

Computing the probability of DNF formulae is an NP-hard problem even if
all variables are independent

Binary decision diagrams represent the formula as a disjunction of
disjoint conjunctions
There are algorithms for efficient conversion
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ProbLog Mechanics

Binary Decision Diagrams

Q = (R1∧R2∧R3∧R5)∨ (R1∧R2∧R3∧R4∧R6)

ROOT

R2

0 R3

0 R4

R5

0 1

R6

R5

0 1

1
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ProbLog Mechanics

Binary Decision Diagrams

Q = (R1∧R2∧R3∧R5)∨ (R1∧R2∧R3∧R4∧R6)

root R2

R3

R4

R6

R5

1

0
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ProbLog Mechanics

Binary Decision Diagrams

Q = (R1∧R2∧R3∧R5)∨ (R1∧R2∧R3∧R4∧R6)

root R2

R3

R4

R6

R5

1

0

Read off the 3 paths that end in 1:
R2, R3, ¬ R4, R5
R2, R3, R4, ¬ R6, R5
R2, R3, R4, R6

Q = (R2∧R3∧¬R4∧R5)∨(R2∧R3∧R4∧¬R6∧R5)∨(R2∧R3∧R4∧R6)

p(Q)= p2p3(1−p4)p5+p2p3p4(1−p6)p5+p2p3p4p6

Computing the BDD diagram:
Turn each successful proof in the SLD tree into a clause
Turn each clause into a BDD diagram
Merge diagrams (P-time)
Put diagram into canonical form (P-time)

De Raedt et al, ProbLog: A Probabilistic Prolog (...), IJCAI 2007
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ProbLog Mechanics

Computing probabilities

Use the Prolog engine to get all possible proofs
Turn the SLD tree into a BDD diagram
Read the probabilities off the BDD diagram
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ProbLog Options

ProbLog options

(default, no keyword): standard ProbLog inference
sample: generate samples from a ProbLog program
mpe: most probable explanation
lfi: learning from interpretations
dt: decision-theoretic problog
map: MAP inference
explain: evaluate using mutually exclusive proofs
ground: generate a ground program
bn: export a Bayesian network
shell: interactive shell

https://problog.readthedocs.io/en/latest/cli.html

Nils Holzenberger NeurSym-AI — ProbLog April 2, 2024 37 / 44



ProbLog Options

shell: interactive shell

problog shell

consult('file.pl')
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ProbLog Options

shell: generate samples from a ProbLog program

problog sample likes.pl -N 10 --with-facts
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ProbLog Options

mpe: most probable explanation

computing the possible world with the highest probability in which all
queries and evidence are true

problog mpe likes.pl --full
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ProbLog Options

lfi: learning from interpretations

next lecture
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ProbLog Options

dt: decision-theoretic problog

File dt_model.pl:

0.3::rain.
0.5::wind.
?::umbrella.
?::raincoat.
broken_umbrella :- umbrella, rain, wind.
dry :- rain, raincoat.
dry :- rain, umbrella, not broken_umbrella.
dry :- not(rain).
utility(broken_umbrella, -40).
utility(raincoat, -20).
utility(umbrella, -2).
utility(dry, 60).

$ problog dt dt_model.pl
raincoat: 0
umbrella: 1
SCORE: 43.00000000000001
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ProbLog Options

explain: evaluate using mutually exclusive proofs

problog explain likes.pl
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ProbLog Options

ground: generate a ground program

problog ground likes.pl
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