Neuro-Symbolic Artificial Intelligence
Chapter 6
ProbLog

Nils Holzenberger

April 2, 2024
Outline

1 Probabilistic programming
 • Atoms
 • Predicates
 • Learning probabilities

2 Probabilities

3 ProbLog
 • Mechanics
 • Computing success probabilities
 • Options
Probabilistic programming

- Atoms
- Predicates
- Learning probabilities

Probabilities

ProbLog

- Mechanics
 - Computing success probabilities
- Options
Problem

- Sometimes it’s straightforward to determine the truth value of a predicate
 - `member(Element,List)`
 - `win(GameState), loss(GameState)`

- Sometimes not
 - `is_cat(Image)`
 - Sentiment analysis

?- Sentence="This is a great vacuum cleaner if you're trying to ruin your carpet.", sentiment(Sentence,Polarity).
Goal

- Incorporate uncertainty into Prolog
- Incorporate learnable parameters into Prolog
 - Statistical machine learning
 - Neural networks — see next lecture
- Combine symbols (Prolog program) and neural networks
ProbLog

\[\text{ProbLog} = \text{Prolog + probabilities} \]

We introduce ProbLog which is — in a sense — the simplest probabilistic extension of Prolog one can design.

ProbLog

- ProbLog is one of many probabilistic programming packages
- As far as I know it is very principled, and enjoys many extensions
 - Approximate and exact inference
 - Plugins for Pytorch
Weather

Example `weather.pl`

- Run queries
- Assert evidence
Poker dice

- Fair dice
- Biased dice
Monty Hall paradox

- The Monty Hall game
 - There are 3 doors. Behind one of them is a reward.
 - The player picks a door.
 - The game moderator opens a different door, revealing that there is no reward behind it.
 - The player can choose to keep the door picked at the beginning, or to pick the other closed door.
 - What is the best decision?

- Example **monty-hall.pl**
 - First, code a door-picking game (1 turn)
 - Second, code the Monty Hall game
Learning with ProbLog: problog lfi myprogram.pl myexamples.pl

- Learning the probability of an opponent cheating
- Learning the bias of the dice
Probabilistic programming
- Atoms
- Predicates
- Learning probabilities

Probabilities

ProbLog
- Mechanics
 - Computing success probabilities
- Options
What is a *probability*?

- I toss a coin. What is the *probability* it lands on tails?
- I throw two dice. What is the *probability* of getting a double six?
What is a probability?

I toss a coin. What is the probability it lands on tails?

I throw two dice. What is the probability of getting a double six?

A belief

Measurement of my belief that the coin will land on tails

The frequency of an outcome

Frequency of outcome if I toss the same coin 10,000 times

The ratio of monetary amounts people are willing to bet

Predictive markets — possibly the most practical definition
A *random variable* is a function that maps the outcome of an experiment to a value

Coin-flipping experiment:

\[X = \{ \text{"the coin lands on heads"} \rightarrow X = 1, \]
\[\text{"the coin lands on tails"} \rightarrow X = 0 \} \]

Poker game:

\[Y = \{ \text{"my opponent cheated"} \rightarrow Y = 1, \]
\[\text{"my opponent did not cheat"} \rightarrow X = 0 \} \]

\[Z = \{ \text{"my opponent is dealt a royal flush"} \rightarrow Z = 1, \ldots \} \]

We can reason about the probability of \(X = 1 \), noted \(p(X = 1) \)
Random variables

- Random variables are not random
- Random variables are not variables
- Random variables are functions
- Random variables are deterministic
- The randomness comes from the outcome
- A random variable deterministically maps an outcome to a value
Why use probabilities in AI?

- There is theory about how to estimate probabilities from data samples
- They can efficiently model noisy processes
 - The process = the part of the mechanics we understand
 - The noise = the part we don’t understand
- Probabilities can model deterministic processes
Useful properties

- Non-negativity \(\forall x \in D, \ p(X = x) \geq 0 \) / \(\forall x \in D, \ f(x) \geq 0 \)
- Sums to 1 \(\sum_{x \in D} p(X = x) = 1 \)
- Additivity If \(A \subset B \) then \(p(A) \leq p(B) \)
- Joint probabilities \(p(X = x, Y = y) \overset{\text{def}}{=} p(\{X = x\} \cap \{Y = y\}) \)
- Marginalization \(p(X = x) = \sum_{y \in D_y} p(X = x, Y = y) \)
- Conditional probabilities \(p(X = x | Y = y) \overset{\text{def}}{=} \frac{p(X=x, Y=y)}{p(Y=y)} \)
Example: probabilities in Natural Language Processing

Step 1. Express the quantities of interest as random variables.

eg spam classification:

Experiment = I receive an email

$X = \text{the email I receive (it’s a string)}$

$Y = 1$ if the email is spam, 0 otherwise
Example: probabilities in Natural Language Processing

\(X = \) the email I receive (it’s a string)

\(Y = 1 \) if the email is spam, 0 otherwise

\[p(y|x) \] Given that I received email \(x \), is it spam?

\[p(y) \] How probable is it that an email I receive should be spam?

\[p(x) \] How probable is it that I should receive email \(x \)?

\[p(x|y) \] How probable is it that I should receive email \(x \), assuming that it’s spam/not spam?
Example: probabilities in Natural Language Processing

\[X = \text{the email I receive (it's a string)} \]

\[Y = 1 \text{ if the email is spam, 0 otherwise} \]

\[p(y|x) \quad \text{Given that I received email } x, \text{ is it spam?} \]
\[p(y) \quad \text{How probable is it that an email I receive should be spam?} \]
\[p(x) \quad \text{How probable is it that I should receive email } x? \]
\[p(x|y) \quad \text{How probable is it that I should receive email } x, \text{ assuming that it's spam/not spam?} \]

Step 2. How to compute \(p(y|x) \)? → next lecture
Outline

1 Probabilistic programming
 - Atoms
 - Predicates
 - Learning probabilities

2 Probabilities

3 ProbLog
 - Mechanics
 - Computing success probabilities
 - Options
Probability distributions over Prolog programs

- Experiment:
 - A ProbLog program is a set of Prolog clauses, each with a probability (weight in [0, 1])
 - We draw clauses from a ProbLog program, according to the probabilities
Probability distributions over Prolog programs

- **Experiment:**
 - A ProbLog program is a set of Prolog clauses, each with a probability (weight in \([0, 1]\))
 - We draw clauses from a ProbLog program, according to the probabilities

- **Outcome:** a set of clauses \(S\)
Probability distributions over Prolog programs

- **Experiment:**
 - A ProbLog program is a set of Prolog clauses, each with a probability (weight in $[0,1]$)
 - We draw clauses from a ProbLog program, according to the probabilities

- **Outcome:** a set of clauses S

- Random variable X: $X = 1$ if $S \vdash G$ where G is a pre-defined query

De Raedt et al., ProbLog: A Probabilistic Prolog (…), IJCAI 2007
Probability distributions over Prolog programs

- **Experiment:**
 - A ProbLog program is a set of Prolog clauses, each with a probability (weight in $[0, 1]$)
 - We draw clauses from a ProbLog program, according to the probabilities

- **Outcome:** a set of clauses S

- **Random variable X:** $X = 1$ if $S \vdash G$ where G is a pre-defined query

- In Prolog we wanted to know whether or not G succeeds. In ProbLog, we get the probability that G succeeds — $p(X = 1)$
Probability distributions over Prolog programs

- **Experiment:**
 - A ProbLog program is a set of Prolog clauses, each with a probability (weight in [0,1])
 - We draw clauses from a ProbLog program, according to the probabilities

- **Outcome:** a set of clauses \(S \)

- **Random variable** \(X \): \(X = 1 \) if \(S \models G \) where \(G \) is a pre-defined query

- In Prolog we wanted to know whether or not \(G \) succeeds. In ProbLog, we get the probability that \(G \) succeeds — \(p(X = 1) \)

- How do we compute \(p(X = 1) \)?
Probability distributions over Prolog programs

- **Experiment:**
 - A ProbLog program is a set of Prolog clauses, each with a probability (weight in \([0, 1]\))
 - We draw clauses from a ProbLog program, according to the probabilities

- **Outcome:** a set of clauses \(S\)

- **Random variable** \(X\): \(X = 1\) if \(S \vdash G\) where \(G\) is a pre-defined query

- In Prolog we wanted to know whether or not \(G\) succeeds. In ProbLog, we get the probability that \(G\) succeeds — \(p(X = 1)\)

- How do we compute \(p(X = 1)\)? We enumerate all programs and their weights

De Raedt *et al*, *ProbLog: A Probabilistic Prolog (...)*, IJCAI 2007
Probability distributions over Prolog programs

A Prolog program L is a set $\{f_1, ..., f_m\}$ where f_i is a Prolog clause

A ProbLog program T is a set of Prolog clauses $C = \{c_1, ..., c_n\}$ and a function w that specifies each clause’s probability $w(c_i)$

G is a clause whose probability we want to compute

\[
\begin{align*}
\text{Probability of program } L \text{ drawn from } T & = p(L|T) = \prod_{c \in L} w(c) \prod_{c \in C \setminus L} (1 - w(c)) \\
\text{Success probability of clause } G \text{ given program } L & = p(G|L) = 1 \text{ if } L \vdash G \text{ else } 0 \\
\text{Probability of clause } G \text{ and program } L \text{ under } T & = p(G,L|T) = p(G|L)p(L|T) \\
\text{Probability of clause } G \text{ under } T & = p(G|T) = \sum_{L \subseteq C} p(G,L|T)
\end{align*}
\]

⚠️ We are abusing notation here

De Raedt et al, ProbLog: A Probabilistic Prolog (...), IJCAI 2007
Weather example

<table>
<thead>
<tr>
<th>cloudy</th>
<th>sunshine</th>
<th>raining</th>
<th>nice</th>
<th>funny</th>
<th>$p(L)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>0.3 * 0.8 = 0.24</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>0.3 * 0.2 = 0.06</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>0.7</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>0</td>
</tr>
</tbody>
</table>
Weather example

<table>
<thead>
<tr>
<th>cloudy</th>
<th>sunshine</th>
<th>raining</th>
<th>nice</th>
<th>funny</th>
<th>(p(L))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>(.3 \times .8 = .24)</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>(.3 \times .2 = .06)</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>0.7</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>0</td>
</tr>
</tbody>
</table>

The sum is 1.
Weather example

Probability of *cloudy*: .3

<table>
<thead>
<tr>
<th>cloudy</th>
<th>sunshine</th>
<th>raining</th>
<th>nice</th>
<th>funny</th>
<th>$p(L)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>$0.3 \times 0.8 = 0.24$</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>$0.3 \times 0.2 = 0.06$</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>0.7</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>0</td>
</tr>
</tbody>
</table>
Weather example

Probability of **nice**: .7

<table>
<thead>
<tr>
<th>cloudy</th>
<th>sunshine</th>
<th>raining</th>
<th>nice</th>
<th>funny</th>
<th>$p(L)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>.3 * .8 = .24</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>.3 * .2 = .06</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>0.7</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>0</td>
</tr>
</tbody>
</table>
Weather example

Probability of funny: 0

<table>
<thead>
<tr>
<th>cloudy</th>
<th>sunshine</th>
<th>raining</th>
<th>nice</th>
<th>funny</th>
<th>$p(L)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>$0.3 \times 0.8 = 0.24$</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>$0.3 \times 0.2 = 0.06$</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>0.7</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>0</td>
</tr>
</tbody>
</table>
Weather example

Probability of funny: 0

<table>
<thead>
<tr>
<th>cloudy</th>
<th>sunshine</th>
<th>raining</th>
<th>nice</th>
<th>funny</th>
<th>(p(L))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>(.3 \times .8 = .24)</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>(.3 \times .2 = .06)</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>0.7</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>0</td>
</tr>
</tbody>
</table>

- This is referred to as model counting
Weather example

Probability of funny: 0

<table>
<thead>
<tr>
<th>cloudy</th>
<th>sunshine</th>
<th>raining</th>
<th>nice</th>
<th>funny</th>
<th>$p(L)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>.3 \times .8 = .24</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>.3 \times .2 = .06</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>0.7</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>0</td>
</tr>
</tbody>
</table>

- This is referred to as *model counting*
- This has the same issues as using truth tables to determine tautologies
% If X is a friend of Y, then X likes Y:
\[l(X,Y) : - f(X,Y). \]

% If there is Z such that X is friends with Z and Z likes Y, % then there is a 80% chance that X likes Y
\[0.8 : : l(X,Y) : - f(X,Z), l(Z,Y). \]

% john is friends with mary with probability .5
\[0.5 : : f(john,mary). \]
\[0.5 : : f(mary,pedro). \]
\[0.5 : : f(mary,tom). \]
\[0.5 : : f(pedro,tom). \]
SLD tree

R1 \(l(X,Y) :- f(X,Y). \)

R2 \(0.8::l(X,Y) :- f(X,Z), l(Z,Y). \)

R3 \(0.5::f(john,mary). \)

R4 \(0.5::f(mary,pedro). \)

R5 \(0.5::f(mary,tom). \)

R6 \(0.5::f(pedro,tom). \)
SLD tree

Query: \texttt{l(john, tom)}

\begin{align*}
\text{success} & \quad \texttt{l(m, t)} \\
& \quad \text{fail} \quad \texttt{l(p, t)} \\
& \quad \text{success} \quad \texttt{l(t, t)} \\
& \quad \text{fail} \quad \text{fail} \\
\end{align*}

\begin{align*}
R1 & \quad \texttt{l(X, Y)} :- \texttt{f(X, Y)}. \\
R2 & \quad 0.8 :: \texttt{l(X, Y)} :- \texttt{f(X, Z)}, \texttt{l(Z, Y)}. \\
R3 & \quad 0.5 :: \texttt{f(john, mary)}. \\
R4 & \quad 0.5 :: \texttt{f(mary, pedro)}. \\
R5 & \quad 0.5 :: \texttt{f(mary, tom)}. \\
R6 & \quad 0.5 :: \texttt{f(pedro, tom)}. \\
\end{align*}

\[Q = (R2 \land R3 \land R1 \land R5) \lor (R2 \land R3 \land R2 \land R4 \land R1 \land R6) \]
\[Q = (R1 \land R2 \land R3 \land R5) \lor (R1 \land R2 \land R3 \land R4 \land R6) \]

SLD tree

In summary:

- Find all the ways of proving goal G
- Do this efficiently by using the trace of the proof by resolution
In summary:

- Find all the ways of proving goal G
- Do this efficiently by using the trace of the proof by resolution

\[
p(Q|T) = p\left(\bigvee_{b \in \text{proofs}(Q)} \bigwedge_{c \in \text{clauses}(b)} c \right)
\]

- proofs(Q): the set of proofs for Q
- clauses(b): the set of clauses that appear in proof b

→ but the paths are not disjoint, so in general

\[
p(q|T) \neq \sum_{b \in \text{pr}(q)} \prod_{c \in \text{cl}(b)} p(c)
\]
Grounding

$l(t,j)$ is grounded; $l(t,x)$ is not grounded

- In some neuro-symbolic programming paradigms, the engine
 - grounds all formulas, then
 - computes the truth values of grounded atoms.
- The SLD tree only computes those groundings necessary for the proof
- In the previous example, $2 \times 4 \times 4 = 32$ groundings:

\[
\begin{align*}
 l(j,j) & \quad l(m,j) & \quad l(p,j) & \quad l(t,j) & \quad f(j,j) & \quad f(m,j) & \quad f(p,j) & \quad f(t,j) \\
 l(j,m) & \quad l(m,m) & \quad l(p,m) & \quad l(t,m) & \quad f(j,m) & \quad f(m,m) & \quad f(p,m) & \quad f(t,m) \\
 l(j,p) & \quad l(m,p) & \quad l(p,p) & \quad l(t,p) & \quad f(j,p) & \quad f(m,p) & \quad f(p,p) & \quad f(t,p) \\
 l(j,t) & \quad l(m,t) & \quad l(p,t) & \quad l(t,t) & \quad f(j,t) & \quad f(m,t) & \quad f(p,t) & \quad f(t,t)
\end{align*}
\]
Binary Decision Diagrams

\[Q = (R_1 \land R_2 \land R_3 \land R_5) \lor (R_1 \land R_2 \land R_3 \land R_4 \land R_6) \]

Computing the probability of DNF formulae is an NP-hard problem even if all variables are independent

- Binary decision diagrams represent the formula as a disjunction of disjoint conjunctions
- There are algorithms for efficient conversion
Binary Decision Diagrams

\[Q = (R_1 \land R_2 \land R_3 \land R_5) \lor (R_1 \land R_2 \land R_3 \land R_4 \land R_6) \]
Binary Decision Diagrams

\[Q = (R_1 \land R_2 \land R_3 \land R_5) \lor (R_1 \land R_2 \land R_3 \land R_4 \land R_6) \]
Binary Decision Diagrams

\[Q = (R1 \land R2 \land R3 \land R5) \lor (R1 \land R2 \land R3 \land R4 \land R6) \]

- Read off the 3 paths that end in 1:
 - R2, R3, \(\neg \) R4, R5
 - R2, R3, R4, \(\neg \) R6, R5
 - R2, R3, R4, R6

\[Q = (R2 \land R3 \land \neg R4 \land R5) \lor (R2 \land R3 \land R4 \land \neg R6 \land R5) \lor (R2 \land R3 \land R4 \land R6) \]

\[p(Q) = p_2 p_3 (1 - p_4)p_5 + p_2 p_3 p_4 (1 - p_6)p_5 + p_2 p_3 p_4 p_6 \]

- Computing the BDD diagram:
 - Turn each successful proof in the SLD tree into a clause
 - Turn each clause into a BDD diagram
 - Merge diagrams (P-time)
 - Put diagram into canonical form (P-time)

De Raedt et al, ProbLog: A Probabilistic Prolog (...), IJCAI 2007
Computing probabilities

- Use the Prolog engine to get all possible proofs
- Turn the SLD tree into a BDD diagram
- Read the probabilities off the BDD diagram
ProbLog options

- (default, no keyword): standard ProbLog inference
- sample: generate samples from a ProbLog program
- mpe: most probable explanation
- lfi: learning from interpretations
- dt: decision-theoretic problog
- map: MAP inference
- explain: evaluate using mutually exclusive proofs
- ground: generate a ground program
- bn: export a Bayesian network
- shell: interactive shell

shell: interactive shell

problog shell

consult('file.pl')
shell: generate samples from a ProbLog program

problog sample likes.pl -N 10 --with-facts
mpe: most probable explanation

computing the possible world with the highest probability in which all queries and evidence are true

problog mpe likes.pl --full
lfi: learning from interpretations

next lecture
ProbLog Options

File dt_model.pl:

0.3::rain.
0.5::wind.
?::umbrella.
?::raincoat.

broken_umbrella :- umbrella, rain, wind.
dry :- rain, raincoat.
dry :- rain, umbrella, not broken_umbrella.
dry :- not(rain).
utility(broken_umbrella, -40).
utility(raincoat, -20).
utility(umbrella, -2).
utility(dry, 60).

$ problog dt dt_model.pl
raincoat: 0
umbrella: 1
SCORE: 43.00000000000001
explain: evaluate using mutually exclusive proofs

problog explain likes.pl
ground: generate a ground program

problog ground likes.pl