Neuro-Symbolic Artificial Intelligence Chapter 5 Symbolic Machine Learning

Nils Holzenberger

March 19, 2024

Halftime

Some statistics:

- You are (more than) halfway through this class
- There are 3 lab sessions left and 1 exam (no documents, no switched-on devices)
- I have posted 3 past exams with solutions

Outline

(1) Some more logic

- Quantifiers
- Previous lab session
- Proof by resolution
- Quantifiers and implications
(2) Symbolic vs statistical machine learning
- Knowledge
- Explanations
- Anomalies
- Mechanics

3 Symbolic machine learning

- Reinforcement learning
- Analogies
- Inductive logic programming
- Machine learning as compression

Outline

(1) Some more logic

- Quantifiers
- Previous lab session
- Proof by resolution
- Quantifiers and implications

(2) Symbolic vs statistical machine learning

(3) Symbolic machine learning

Outline

(1) Some more logic

- Quantifiers
- Previous lab session
- Proof by resolution
- Quantifiers and implications

(2) Symbolic vs statistical machine learning

(3) Symbolic machine learning

Quantifiers in natural language

\triangle This is a joke about quantifiers

In this country a woman gives birth every fifteen minutes.

Quantifiers in natural language

\triangle This is a joke about quantifiers

In this country a woman gives birth every fifteen minutes. Our job is to find that woman and stop her.

- Groucho Marx

Outline

(1) Some more logic

- Quantifiers
- Previous lab session
- Proof by resolution
- Quantifiers and implications

(2) Symbolic vs statistical machine learning

(3) Symbolic machine learning

Previous lab session

Error in question "Resolution with a trap"

The implication was in the wrong direction in the question

Thank you for telling me this

This question will not be graded

Outline

(1) Some more logic

- Quantifiers
- Previous lab session
- Proof by resolution
- Quantifiers and implications

(2) Symbolic vs statistical machine learning

(3) Symbolic machine learning

Proof by resolution

$[\neg A, B]$
 [A]

Why do we do this?
[B]

Proof by resolution

Goal: prove that $((\neg A \vee B) \wedge A)$ is a tautology

Proof by resolution

Goal: prove that $((\neg A \vee B) \wedge A)$ is a tautology \rightarrow show that $\neg((\neg A \vee B) \wedge A)$ is not satisfiable

Proof by resolution

Goal: prove that $((\neg A \vee B) \wedge A)$ is a tautology
\rightarrow show that $\neg((\neg A \vee B) \wedge A)$ is not satisfiable
\rightarrow show that whatever valuation I pick, $v(\neg((\neg A \vee B) \wedge A))=$ False

Proof by resolution

Goal: prove that $((\neg A \vee B) \wedge A)$ is a tautology
\rightarrow show that $\neg((\neg A \vee B) \wedge A)$ is not satisfiable
\rightarrow show that whatever valuation I pick, $v(\neg((\neg A \vee B) \wedge A))=$ False

$$
[\neg((\neg A \vee B) \wedge A)]
$$

Proof by resolution

Goal: prove that $((\neg A \vee B) \wedge A)$ is a tautology
\rightarrow show that $\neg((\neg A \vee B) \wedge A)$ is not satisfiable
\rightarrow show that whatever valuation I pick, $v(\neg((\neg A \vee B) \wedge A))=$ False

$$
[\neg((\neg A \vee B) \wedge A)]
$$

(1) $[\neg A, B]$
(2) $[A]$

Proof by resolution

Goal: show that whatever valuation I pick, $v(\neg((\neg A \vee B) \wedge A))=$ False
(1) $[\neg A, B]$
(2) $[A]$

Proof by resolution

Goal: show that whatever valuation I pick, $v(\neg((\neg A \vee B) \wedge A))=$ False
(1) $[\neg A, B]$
(2) $[A]$

Let v be a valuation.

Proof by resolution

Goal: show that whatever valuation I pick, $v(\neg((\neg A \vee B) \wedge A))=$ False
(1) $[\neg A, B]$
(2) $[A]$

Let v be a valuation.

- If $v(A)=$ True, $v((1))=v(B)$ and $v((2))=$ True, so the valuation of the whole thing is $v(B)$.

Proof by resolution

Goal: show that whatever valuation I pick, $v(\neg((\neg A \vee B) \wedge A))=$ False

$$
\text { (1) }[\neg A, B]
$$

(2) $[A]$

Let v be a valuation.

- If $v(A)=$ True, $v((1))=v(B)$ and $v((2))=$ True, so the valuation of the whole thing is $v(B)$.
- If $v(A)=$ False, $v((1))=$ True and $v((2))=$ False so the valuation of the whole thing is False.

Proof by resolution

Goal: show that whatever valuation I pick, $v(\neg((\neg A \vee B) \wedge A))=$ False

$$
\text { (1) }[\neg A, B]
$$

(2) $[A]$

Let v be a valuation.

- If $v(A)=$ True, $v((1))=v(B)$ and $v((2))=$ True, so the valuation of the whole thing is $v(B)$.
- If $v(A)=$ False, $v((1))=$ True and $v((2))=$ False so the valuation of the whole thing is False.
\rightarrow I only need to consider $v(B)$
Exercise: why can I merge $[A, X, B]$ and $[C, \neg X, D]$ to $[A, B, C, D]$?

Outline

(1) Some more logic

- Quantifiers
- Previous lab session
- Proof by resolution
- Quantifiers and implications

(2) Symbolic vs statistical machine learning

(3) Symbolic machine learning

Why $(((\forall x) A) \supset B) \equiv(\exists x)(A \supset B)$
and not $(((\forall x) A) \supset B) \equiv(\forall x)(A \supset B)$?

Proof using equivalence with \wedge and \vee

$$
\begin{aligned}
(((\forall x) A) \supset B) & \equiv((\neg((\forall x) A)) \vee B) \\
& \equiv(((\exists x)(\neg A)) \vee B) \\
& \equiv(\exists x)(\neg A \vee B) \\
& \equiv(\exists x)(A \supset B)
\end{aligned}
$$

Why $(((\forall x) A) \supset B) \equiv(\exists x)(A \supset B)$
and not $(((\forall x) A) \supset B) \equiv(\forall x)(A \supset B)$?

Example where $(((\forall x) A) \supset B) \not \equiv(\forall x)(A \supset B)$:
$B=\perp$
Domain $D=\{0,1\}$
Interpretation of A : $A^{I}=x=0$

- Left side
- $((\forall x) A)$ is False
- $((\forall x) A) \supset B)$ is True
- Right side
- For assignment $x=0, A^{\prime} \supset B^{\prime}$ is False
- $(\forall x)(A \supset B)$ is False

Why $(((\forall x) A) \supset B) \equiv(\exists x)(A \supset B)$
and not $(((\forall x) A) \supset B) \equiv(\forall x)(A \supset B)$?

Examples where $(((\forall x) A) \supset B) \equiv(\forall x)(A \supset B)$:

- If the domain D contains a single element, then $\forall x$ and $\exists x$ are the same.
- If x occurs neither in A nor in B, then $\forall x$ and $\exists x$ behave the same in that formula.

Outline

(1) Some more logic

(2) Symbolic vs statistical machine learning

- Knowledge
- Explanations
- Anomalies
- Mechanics

(3) Symbolic machine learning

Symbolic vs statistical machine learning

- Symbolic machine learning: define syntax over symbols to prove theorems
- Statistical machine learning: define random variables and parameterize the probabilities

Outline

(1) Some more logic

(2) Symbolic vs statistical machine learning

- Knowledge
- Explanations
- Anomalies
- Mechanics

(3) Symbolic machine learning

Background knowledge

- In symbolic ML: background knowledge can be added easily
- Add a rule
- Add an entire knowledge base
- Tweak one parameter
- In statistical ML: background knowledge is acquired as part of the target task

Auditability

- What does ChatGPT know?
- Symbolic models can be audited
- Statistical models, not so much

Editability

- The knowledge in symbolic models can be edited (insert, delete, replace)
- In statistical ML it's possible (see Lake et al) but takes many repetitions
- Acquiring a new word for a language model is estimated to take $\sim 10 \mathrm{k}$ occurrences of the word
- There are ways to construct one-shot learning, e.g. Lake et al, One shot learning of simple visual concepts, CogSci 2011

One-shot learning of unknown object

Generalization

- The point of machine learning is to build a model using training data, and then to use it on new data
- A model that works well on new data has good generalization
- Historically, statistical ML has generalized better than symbolic ML
- Statistical systems also learn structure: While deep networks are capable of memorizing noise data, our results suggest that they tend to prioritize learning simple patterns first. ${ }^{1}$

[^0]
Outline

(1) Some more logic

(2) Symbolic vs statistical machine learning

- Knowledge
- Explanations
- Anomalies
- Mechanics

(3) Symbolic machine learning

Criteria for explanations

- Relevance
- Adapted to the level of expertise of the user
- Specific: just highlighting the part of the input that led to the decision is not specific enough
- Faithfulness: Is the reason provided the actual reason that was used to get to the output?

Symbolic ML

- Typically, a model is its own explanation
- The rules define how the input is mapped to the output (\rightarrow faithfulness)
- Rules can be translated to match the desired level of expertise and specificity (\rightarrow relevance)
- Generally this translation is a challenge

Statistical ML

Yes, when you add two odd numbers together, the result is always an odd number. This is because any odd number can be expressed as $2 n+1$, where n is an integer. When you add two numbers in this form, the result is $(2 n+1)+(2 m+1)=2(n+m)+2$, which is also in the form $2 p+1$, where p is an integer. This means that the result is an odd number.
— ChatGPT, early 2023

- Numerical computations need to be translated to relevant and faithful explanations
- Post-hoc models of explanability have no guarantee of being faithful

Outline

(1) Some more logic

(2) Symbolic vs statistical machine learning

- Knowledge
- Explanations
- Anomalies
- Mechanics

(3) Symbolic machine learning

Al-generated images

Which image is Al-generated?

Al-generated images

Which image is Al-generated?

\rightarrow there are anomalies
https://hyperallergic.com/808778/ai-image-generators-finally-figured-out-hands/

Homer Simpson's brain

An Al image recognition software would not understand the anomaly because

- a brain with a crayon in it looks almost like a brain and
- it has never seen crayons in brains

Contradiction

- Symbolic ML is sensitive to it
- Statistical ML is not

Outline

(1) Some more logic

(2) Symbolic vs statistical machine learning

- Knowledge
- Explanations
- Anomalies
- Mechanics

(3) Symbolic machine learning

Randomness

- Many factors cause x, but we only know some of them, so it appears that the behavior is random
- Saying that x is random is like saying "I don't know the mechanisms that govern the behavior of x "
- The best thing would be to find out the mechanism; the next best thing is to model the probability
- Imagine modeling the trajectory of the Earth around the sun by interpolating the curve with a polynomial

Independently controllable features

Independently Controllable Factors

Jules Pondard ${ }^{* 123}$ Emmanuel Bengio ${ }^{* 4}$
Marc Sarfati ${ }^{15} \quad$ Philippe Beaudoin ${ }^{2} \quad$ Marie-Jean Meurs ${ }^{6} \quad$ Joelle Pineau ${ }^{4}$
Doina Precup ${ }^{4} \quad$ Yoshua Bengio ${ }^{17}$

August 29, 2017

Models

- Symbolic and statistical systems are models of reality, not reality itself
- All models are wrong, some of them are useful - George E. P. Box

Outline

(1) Some more logic

(2) Symbolic vs statistical machine learning
(3) Symbolic machine learning

- Reinforcement learning
- Analogies
- Inductive logic programming
- Machine learning as compression

Symbolic vs statistical machine learning

- This lecture is mostly about symbolic machine learning
- The next lectures will be about statistical machine learning

Outline

(1) Some more logic

(2) Symbolic vs statistical machine learning

(3) Symbolic machine learning

- Reinforcement learning
- Analogies
- Inductive logic programming
- Machine learning as compression

Noughts and Crosses/Tic-Tac-Toe

Matchbox Educable Noughts and Crosses Engine

https://en.wikipedia.org/wiki/Matchbox_Educable_Noughts_and_Crosses_Engine

Matchbox Educable Noughts and Crosses Engine

- Donald Michie, 1961
- 304 matchboxes, one for each state of the game (up to rotation and symmetry)
- Beads of 9 different colors (one for each possible move)
- To decide which move to make:
- Go to the matchbox corresponding to the game state
- Draw a bead from it, and take that move
- If the game was won, return the beads to their original box, and add 3 more beads of that color
- If the game was lost, don't return the beads to their original box
- If the game was a draw, return the beads and 1 more to their original box

Nim

- Players take turns removing matches
- Each player can remove as many matches as they like (at least 1), as long as they all come from the same row
- The last player to remove a match loses

Outline

(1) Some more logic

(2) Symbolic vs statistical machine learning

(3) Symbolic machine learning

- Reinforcement learning
- Analogies
- Inductive logic programming
- Machine learning as compression

Analogies

Analogies

$$
\begin{array}{rll}
\text { ghi } & \rightarrow & \text { ghj } \\
\text { uuvvww } & \rightarrow & \text { uuvvxx } \\
& & \text { uuvvjj } \\
& & \text { uuvvwx } \\
& & \text { ghj } \\
& & \text { uuwvwx } \\
& & \text { uuvvj } \\
& & \text { uuvvww } \\
& & \text { uuvvwj } \\
& & \text { error }
\end{array}
$$

Analogies

- On-the-fly learning of rules
- Many tasks are a form of analogy
- solve \rightarrow solves, get \rightarrow ?
- rosa \rightarrow rosam, vita \rightarrow ?
- orang \rightarrow orang-orang, burung \rightarrow ?
conjugation in English ${ }^{2}$ declension in Latin plural in Indonesian
- Analogies are highly discrete, but may be approximated by continuous representations, e.g. word embeddings ${ }^{3}$

[^1] CogSci 2017

Outline

(1) Some more logic

(2) Symbolic vs statistical machine learning

(3) Symbolic machine learning

- Reinforcement learning
- Analogies
- Inductive logic programming
- Machine learning as compression

Deduction vs induction

Deduction: rules \rightarrow conclusions (Prolog)
Induction: conclusions \rightarrow rules (Progol, Stephen Muggleton, 1995)

Learning rules

```
cute(X) :- dog(X), small(X), fluffy(X). (1)
cute(X) :- cat(X), fluffy(X).(2)
```


Learning rules

```
cute(X) :- dog(X), small(X), fluffy(X). (1)
cute(X) :- cat(X), fluffy(X).(2)
Least-general generalization of (1) and (2): cute(X) :- fluffy (X).
```


Learning rules

```
cute(X) :- dog(X), small(X), fluffy(X). (1)
cute(X) :- cat(X), fluffy(X).(2)
Least-general generalization of (1) and (2): cute(X) :- fluffy (X).
```

tame(X) :- pet(X).

```
```

pet(X) :- dog(X).

```
pet(X) :- dog(X).
pet(X) :- cat(X).
pet(X) :- cat(X).
small(X) :- cat(X).
small(X) :- cat(X).
tame(X) :- pet(X).
tame(X) :- pet(X).

\section*{Learning rules}
```

cute(X) :- dog(X), small(X), fluffy(X).
cute(X) :- cat(X), fluffy(X).
cute(X) :- cat(X), fluffy(X). (2)

```(1)

Least-general generalization of (1) and (2): cute (X) :- fluffy (X).
```

pet(X) :- dog(X).
pet(X) :- cat(X).
small(X) :- cat(X).
tame(X) :- pet(X).

```(4)

Least-general generalization of (1)-(6): cute (X) :- pet(X), small(X), fluffy (X).

Inverse resolution

\section*{Association Rule Mining}

Data-driven version of inverse resolution
- The data \(D\) is a set of transactions e.g. Transaction \(=\) list of items someone bought in a shop
- Every transaction has a set of binary attributes e.g. Attribute \(i=\) whether person bought item \#i
- An itemset is a subset of a transaction
- Support of itemset \(X\) is number of occurrences in \(D\) \(\operatorname{support}(X)=|\{t \mid t \in D, X \subseteq t\}|\)
- Confidence in rule \(X \rightarrow Y\) is \(\frac{\operatorname{support}(X \cap Y)}{\operatorname{support}(X)}\)
\(\triangle\) This is based on co-occurrence in data, while inverse resolution is based on existing rules.

Agrawal et al, Mining association rules between sets of items in large databases, SIGMOD 1993; Belyy and Van Durme, Script Induction as Association Rule Mining, NUSE@ACL 2020

\section*{Outline}

\section*{(1) Some more logic}

\section*{(2) Symbolic vs statistical machine learning}
(3) Symbolic machine learning
- Reinforcement learning
- Analogies
- Inductive logic programming
- Machine learning as compression

\section*{Tycho Brahe}


\section*{Tycho Brahe 1546-1601}

https://en.wikipedia.org/ wiki/Tycho_Brahe

\section*{Johannes Kepler}


Johannes Kepler
1571-1630

\section*{Isaac Newton}

(1) A body remains at rest, or in motion at a constant speed in a straight line, except insofar as it is acted upon by a force.
(2) \(\frac{\mathrm{d} \vec{p}}{\mathrm{~d} t}=\sum_{i} \vec{F}_{i}\)
(3) \(\vec{F}_{A \rightarrow B}=-\vec{F}_{B \rightarrow A}\) and \(\vec{F}_{A \rightarrow B} \cdot \overrightarrow{A B}=0\)
https://en.wikipedia.org/wiki/Isaac_Newton

Isaac Newton
1643-1727

\section*{Compression}

\section*{Reality}


\section*{Compression}


\section*{Compression}


Empirical laws

\(\frac{T^{2}}{a^{3}}=\) constant

\section*{Compression}


Empirical laws


Principles

\[
\frac{\mathrm{d} \vec{p}}{\mathrm{~d} t}=\sum_{i} \vec{F}_{i}
\]

\section*{Compression}

\section*{COMPRESSION}


Empirical laws

\[
\frac{\mathrm{d} \vec{p}}{\mathrm{~d} t}=\sum_{i} \vec{F}_{i}
\]
\[
\frac{T^{2}}{a^{3}}=\text { constant }
\]

\section*{ChatGPT as compression}

\section*{ANNALS OF TECHNOLOGY}

\section*{CHATGPT IS A BLURRY JPEG OF THE WEB}

OpenAI's chatbot offers paraphrases, whereas Google offers quotes. Which do we prefer?

\author{
By Ted Chiang
}

February 9, 2023

\section*{Minimum description length}

Which one is the best model?
- An equation with 8 parameters that explains \(92 \%\) of observations
- A parametric function with 12 M parameters trained on 1M samples that explains \(96 \%\) of observations

\section*{Minimum description length}

Which one is the best model?
- An equation with 8 parameters that explains \(92 \%\) of observations
- A parametric function with 12 M parameters trained on 1 M samples that explains \(96 \%\) of observations

The answer depends on:
- Your goal
- Predict
- Understand
- The cost of
- Making inaccurate predictions
- Computation
- Training (a.k.a. Parameter estimation)
- Inference
- Collecting data samples
- ...

These criteria can be unified using minimum description length \(\mathrm{DL}(\) data \()=\mathrm{DL}(\) model \()+\mathrm{DL}(\) data \(\mid\) model \()\)```


[^0]:    ${ }^{1}$ Arpit et al, A Closer Look at Memorization in Deep Networks, ICML 2017

[^1]:    ${ }^{2}$ Murena et al, Solving Analogies on Words based on Minimal Complexity Transformation, IJCAI 2020
    ${ }^{3}$ Mikolov et al, Distributed Representations of Words and Phrases and their Compositionality, NIPS 2013; Chen et al, Evaluating vector-space models of analogy,

