Neuro-Symbolic Artificial Intelligence Chapter 5 Symbolic Machine Learning

Nils Holzenberger

March 19, 2024

Halftime

Some statistics:

- You are (more than) halfway through this class
- There are 3 lab sessions left and 1 exam (no documents, no switched-on devices)
- I have posted 3 past exams with solutions

- Some more logic
 - Quantifiers
 - Previous lab session
 - Proof by resolution
 - Quantifiers and implications
- Symbolic vs statistical machine learning
 - Knowledge
 - Explanations
 - Anomalies
 - Mechanics
- Symbolic machine learning
 - Reinforcement learning
 - Analogies
 - Inductive logic programming
 - Machine learning as compression

- Some more logic
 - Quantifiers
 - Previous lab session
 - Proof by resolution
 - Quantifiers and implications
- Symbolic vs statistical machine learning
- Symbolic machine learning

- Some more logic
 - Quantifiers
 - Previous lab session
 - Proof by resolution
 - Quantifiers and implications
- Symbolic vs statistical machine learning
- Symbolic machine learning

Quantifiers in natural language

↑ This is a joke about quantifiers

In this country a woman gives birth every fifteen minutes.

Quantifiers in natural language

↑ This is a joke about quantifiers

In this country a woman gives birth every fifteen minutes. Our job is to find that woman and stop her.

— Groucho Marx

- Some more logic
 - Quantifiers
 - Previous lab session
 - Proof by resolution
 - Quantifiers and implications
- Symbolic vs statistical machine learning
- Symbolic machine learning

Previous lab session

Error in question "Resolution with a trap"

The implication was in the wrong direction in the question

Thank you for telling me this

This question will not be graded

- Some more logic
 - Quantifiers
 - Previous lab session
 - Proof by resolution
 - Quantifiers and implications
- Symbolic vs statistical machine learning
- Symbolic machine learning

$$[A]$$

$$[A]$$

$$[B]$$

Why do we do this?

Goal: prove that $((\neg A \lor B) \land A)$ is a tautology

Goal: prove that $((\neg A \lor B) \land A)$ is a tautology

 \rightarrow show that $\neg((\neg A \lor B) \land A)$ is not satisfiable

Goal: prove that $((\neg A \lor B) \land A)$ is a tautology

- \rightarrow show that $\neg((\neg A \lor B) \land A)$ is not satisfiable
- \rightarrow show that whatever valuation I pick, $v(\neg((\neg A \lor B) \land A)) = \text{False}$

Goal: prove that $((\neg A \lor B) \land A)$ is a tautology

- \rightarrow show that $\neg((\neg A \lor B) \land A)$ is not satisfiable
- \rightarrow show that whatever valuation I pick, $v(\neg((\neg A \lor B) \land A)) = \text{False}$

$$[\neg((\neg A \lor B) \land A)]$$

Goal: prove that $((\neg A \lor B) \land A)$ is a tautology

- \rightarrow show that $\neg((\neg A \lor B) \land A)$ is not satisfiable
- \rightarrow show that whatever valuation I pick, $v(\neg((\neg A \lor B) \land A)) = \text{False}$

$$[\neg((\neg A \lor B) \land A)]$$

• • •

$$(1) [\neg A, B]$$

(2) [A]

Goal: show that whatever valuation I pick, $v(\neg((\neg A \lor B) \land A)) = \text{False}$

(1)
$$[\neg A, B]$$

Goal: show that whatever valuation I pick, $v(\neg((\neg A \lor B) \land A)) = \text{False}$

(1)
$$[\neg A, B]$$
 (2) $[A]$

Let v be a valuation.

Goal: show that whatever valuation I pick, $v(\neg((\neg A \lor B) \land A)) = \text{False}$

(1)
$$[\neg A, B]$$

(2) $[A]$

Let v be a valuation.

• If v(A) = True, v((1)) = v(B) and v((2)) = True, so the valuation of the whole thing is v(B).

Goal: show that whatever valuation I pick, $v(\neg((\neg A \lor B) \land A)) = \text{False}$

(1)
$$[\neg A, B]$$

(2) $[A]$

Let v be a valuation.

- If v(A) = True, v((1)) = v(B) and v((2)) = True, so the valuation of the whole thing is v(B).
- If v(A) = False, v((1)) = True and v((2)) = False so the valuation of the whole thing is False.

Goal: show that whatever valuation I pick, $v(\neg((\neg A \lor B) \land A)) = \text{False}$

(1)
$$[\neg A, B]$$

(2) $[A]$

Let v be a valuation.

- If v(A) = True, v((1)) = v(B) and v((2)) = True, so the valuation of the whole thing is v(B).
- If v(A) = False, v((1)) = True and v((2)) = False so the valuation of the whole thing is False.
- \rightarrow I only need to consider v(B)

Exercise: why can I merge [A, X, B] and $[C, \neg X, D]$ to [A, B, C, D]?

- Some more logic
 - Quantifiers
 - Previous lab session
 - Proof by resolution
 - Quantifiers and implications
- 2 Symbolic vs statistical machine learning
- Symbolic machine learning

Why
$$(((\forall x)A)\supset B)\equiv (\exists x)(A\supset B)$$

and not $(((\forall x)A)\supset B)\equiv (\forall x)(A\supset B)$?

Proof using equivalence with \land and \lor

$$(((\forall x)A) \supset B) \equiv ((\neg((\forall x)A)) \lor B)$$
$$\equiv (((\exists x)(\neg A)) \lor B)$$
$$\equiv (\exists x)(\neg A \lor B)$$
$$\equiv (\exists x)(A \supset B)$$

Why
$$(((\forall x)A)\supset B)\equiv (\exists x)(A\supset B)$$

and not $(((\forall x)A)\supset B)\equiv (\forall x)(A\supset B)$?

Example where
$$(((\forall x)A)\supset B)\not\equiv (\forall x)(A\supset B)$$
:

$$B = \perp$$

Domain
$$D = \{0, 1\}$$

Interpretation of A: $A^{I} = x == 0$

- Left side
 - $((\forall x)A)$ is False
 - $((\forall x)A) \supset B$) is True
- Right side
 - For assignment x = 0, $A^I \supset B^I$ is False
 - $(\forall x)(A \supset B)$ is False

Why
$$(((\forall x)A)\supset B)\equiv (\exists x)(A\supset B)$$

and not $(((\forall x)A)\supset B)\equiv (\forall x)(A\supset B)$?

Examples where $(((\forall x)A)\supset B)\equiv (\forall x)(A\supset B)$:

- If the domain D contains a single element, then $\forall x$ and $\exists x$ are the same.
- If x occurs neither in A nor in B, then $\forall x$ and $\exists x$ behave the same in that formula.

- Some more logic
- Symbolic vs statistical machine learning
 - Knowledge
 - Explanations
 - Anomalies
 - Mechanics
- Symbolic machine learning

Symbolic vs statistical machine learning

- Symbolic machine learning: define syntax over symbols to prove theorems
- Statistical machine learning: define random variables and parameterize the probabilities

- Some more logic
- Symbolic vs statistical machine learning
 - Knowledge
 - Explanations
 - Anomalies
 - Mechanics
- Symbolic machine learning

Background knowledge

- In symbolic ML: background knowledge can be added easily
 - Add a rule
 - Add an entire knowledge base
 - Tweak one parameter
- In statistical ML: background knowledge is acquired as part of the target task

Auditability

- What does ChatGPT know?
- Symbolic models can be audited
- Statistical models, not so much

Editability

- The knowledge in symbolic models can be edited (insert, delete, replace)
- In statistical ML it's possible (see Lake et al) but takes many repetitions
 - Acquiring a new word for a language model is estimated to take ~10k occurrences of the word
 - There are ways to construct one-shot learning, e.g. Lake et al, One shot learning of simple visual concepts, CogSci 2011

One-shot learning of unknown object

Generalization

- The point of machine learning is to build a model using training data, and then to use it on new data
- A model that works well on new data has good generalization
- Historically, statistical ML has generalized better than symbolic ML
- Statistical systems also learn structure: While deep networks are capable of memorizing noise data, our results suggest that they tend to prioritize learning simple patterns first.¹

- Some more logic
- Symbolic vs statistical machine learning
 - Knowledge
 - Explanations
 - Anomalies
 - Mechanics
- Symbolic machine learning

Criteria for explanations

- Relevance
 - Adapted to the level of expertise of the user
 - Specific: just highlighting the part of the input that led to the decision is not specific enough
- Faithfulness: Is the reason provided the actual reason that was used to get to the output?

Symbolic ML

- Typically, a model is its own explanation
- The rules define how the input is mapped to the output (→ faithfulness)
- Rules can be translated to match the desired level of expertise and specificity (→ relevance)
- Generally this translation is a challenge

Statistical ML

Yes, when you add two odd numbers together, the result is always an odd number. This is because any odd number can be expressed as 2n+1, where n is an integer. When you add two numbers in this form, the result is (2n+1)+(2m+1)=2(n+m)+2, which is also in the form 2p+1, where p is an integer. This means that the result is an odd number.

- ChatGPT, early 2023
 - Numerical computations need to be translated to relevant and faithful explanations
 - Post-hoc models of explanability have no guarantee of being faithful

Outline

- Some more logic
- Symbolic vs statistical machine learning
 - Knowledge
 - Explanations
 - Anomalies
 - Mechanics
- Symbolic machine learning

Al-generated images

Which image is Al-generated?

Al-generated images

Which image is Al-generated?

→ there are anomalies

https://hyperallergic.com/808778/ai-image-generators-finally-figured-out-hands/

Homer Simpson's brain

An AI image recognition software would not understand the anomaly because

- a brain with a crayon in it looks almost like a brain and
- it has never seen crayons in brains

Contradiction

- Symbolic ML is sensitive to it
- Statistical ML is not

Outline

- Some more logic
- Symbolic vs statistical machine learning
 - Knowledge
 - Explanations
 - Anomalies
 - Mechanics
- Symbolic machine learning

Randomness

- Many factors cause x, but we only know some of them, so it appears that the behavior is random
- Saying that x is random is like saying "I don't know the mechanisms that govern the behavior of x"
- The best thing would be to find out the mechanism; the next best thing is to model the probability
- Imagine modeling the trajectory of the Earth around the sun by interpolating the curve with a polynomial

Independently controllable features

Independently Controllable Factors

```
Valentin Thomas^{*\,12} Jules Pondard^{*\,12\,3} Emmanuel Bengio^{*\,4} Marc Sarfati^{1\,5} Philippe Beaudoin^2 Marie-Jean Meurs^6 Joelle Pineau^4 Doina Precup^4 Yoshua Bengio^{1\,7}
```

August 29, 2017

Models

- Symbolic and statistical systems are models of reality, not reality itself
- All models are wrong, some of them are useful George E. P. Box

Outline

- Some more logic
- 2 Symbolic vs statistical machine learning
- Symbolic machine learning
 - Reinforcement learning
 - Analogies
 - Inductive logic programming
 - Machine learning as compression

Symbolic vs statistical machine learning

- This lecture is mostly about symbolic machine learning
- The next lectures will be about statistical machine learning

Outline

- Some more logic
- 2 Symbolic vs statistical machine learning
- Symbolic machine learning
 - Reinforcement learning
 - Analogies
 - Inductive logic programming
 - Machine learning as compression

Noughts and Crosses/Tic-Tac-Toe

Matchbox Educable Noughts and Crosses Engine

Matchbox Educable Noughts and Crosses Engine

- Donald Michie, 1961
- 304 matchboxes, one for each state of the game (up to rotation and symmetry)
- Beads of 9 different colors (one for each possible move)
- To decide which move to make:
 - Go to the matchbox corresponding to the game state
 - Draw a bead from it, and take that move
- If the game was won, return the beads to their original box, and add
 3 more beads of that color
- If the game was lost, don't return the beads to their original box
- If the game was a draw, return the beads and 1 more to their original box

Nim

- Players take turns removing matches
- Each player can remove as many matches as they like (at least 1), as long as they all come from the same row
- The last player to remove a match loses

Outline

- Some more logic
- 2 Symbolic vs statistical machine learning
- Symbolic machine learning
 - Reinforcement learning
 - Analogies
 - Inductive logic programming
 - Machine learning as compression

Analogies

Analogies

```
ghi → ghj
uuvvww → uuvvxx
uuvvjj
uuvvwx
ghj
uuwvwx
uuvvj
uuvvww
uuvvyj
error
```

Analogies

- On-the-fly learning of rules
- Many tasks are a form of analogy
 - solve → solves, get → ?
 - rosa → rosam, vita → ?
 - orang → orang-orang, burung → ?

conjugation in English² declension in Latin plural in Indonesian

 Analogies are highly discrete, but may be approximated by continuous representations, e.g. word embeddings³

²Murena et al, Solving Analogies on Words based on Minimal Complexity Transformation, IJCAI 2020

³Mikolov et al, Distributed Representations of Words and Phrases and their Compositionality, NIPS 2013; Chen et al, Evaluating vector-space models of analogy, CogSci 2017

Outline

- Some more logic
- 2 Symbolic vs statistical machine learning
- Symbolic machine learning
 - Reinforcement learning
 - Analogies
 - Inductive logic programming
 - Machine learning as compression

Deduction vs induction

Deduction: rules → conclusions (Prolog)

Induction: conclusions → rules (Progol, Stephen Muggleton, 1995)

```
cute(X) :- dog(X), small(X), fluffy(X). (1)
cute(X) :- cat(X), fluffy(X).
                                         (2)
```

```
cute(X) :- dog(X), small(X), fluffy(X). (1)
cute(X) :- cat(X), fluffy(X).
                                         (2)
```

Least-general generalization of (1) and (2): cute(X) := fluffy(X).

```
cute(X) := dog(X), small(X), fluffy(X). (1)
cute(X) :- cat(X), fluffy(X).
                                           (2)
Least-general generalization of (1) and (2): cute(X) := fluffy(X).
                          (3)
pet(X) := dog(X).
pet(X) := cat(X).
                          (4)
small(X) := cat(X).
                          (5)
tame(X) :- pet(X).
                          (6)
```

```
cute(X) := dog(X), small(X), fluffy(X). (1)
cute(X) :- cat(X), fluffy(X).
                                           (2)
Least-general generalization of (1) and (2): cute(X) := fluffy(X).
                          (3)
pet(X) := dog(X).
pet(X) := cat(X).
                    (4)
small(X) := cat(X).
                         (5)
tame(X) :- pet(X).
                          (6)
Least-general generalization of (1)-(6):
cute(X) :- pet(X), small(X), fluffy(X).
```

Inverse resolution

Association Rule Mining

Data-driven version of inverse resolution

- The data D is a set of transactions
 e.g. Transaction = list of items someone bought in a shop
- Every transaction has a set of binary attributes e.g. Attribute i = whether person bought item #i
- An itemset is a subset of a transaction
- Support of itemset X is number of occurrences in D support(X) = $|\{t|t \in D, X \subseteq t\}|$
- Confidence in rule $X \to Y$ is $\frac{\text{support}(X \cap Y)}{\text{support}(X)}$

 $\underline{\wedge}$ This is based on co-occurrence in data, while inverse resolution is based on existing rules.

Agrawal et al, Mining association rules between sets of items in large databases, SIGMOD 1993; Belyy and Van Durme, Script Induction as Association Rule Mining, NUSE@ACL 2020

Outline

- Some more logic
- 2 Symbolic vs statistical machine learning
- Symbolic machine learning
 - Reinforcement learning
 - Analogies
 - Inductive logic programming
 - Machine learning as compression

Tycho Brahe

Tycho Brahe 1546 - 1601

https://en.wikipedia.org/ wiki/Tycho_Brahe

Johannes Kepler

Johannes Kepler 1571 - 1630

- The orbit of every planet is an ellipse with the sun at one of the two foci.
- A line joining a planet and the Sun sweeps out equal areas during equal intervals of time.
- The ratio of the square of an object's orbital period with the cube of the semi-major axis of its orbit is the same for all objects orbiting the same primary.

 $\frac{T^2}{a^3}$ = constant

https://en.wikipedia.org/wiki/Johannes_Kepler

Isaac Newton

Isaac Newton 1643 - 1727

- A body remains at rest, or in motion at a constant speed in a straight line, except insofar as it is acted upon by a force.
- $\vec{F}_{A \to B} = -\vec{F}_{B \to A} \text{ and } \vec{F}_{A \to B} \cdot \vec{AB} = 0$

https://en.wikipedia.org/wiki/Isaac_Newton

Reality

Reality

Observations

Reality

Observations

Empirical laws

 $\frac{T^2}{a^3}$ = constant

Reality

Observations

Empirical laws

 $\frac{T^2}{a^3}$ = constant

Principles

$$\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \sum_i \vec{F}_i$$

COMPRESSION

Reality

Observations

Empirical laws

Principles

$$\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \sum_{i} \vec{F}_{i}$$

 $\frac{T^2}{a^3}$ = constant

ChatGPT as compression

ANNALS OF TECHNOLOGY

CHATGPT IS A BLURRY JPEG OF THE WEB

OpenAI's chatbot offers paraphrases, whereas Google offers quotes. Which do we prefer?

By Ted Chiang

February 9, 2023

Minimum description length

Which one is the best model?

- An equation with 8 parameters that explains 92% of observations
- A parametric function with 12M parameters trained on 1M samples that explains 96% of observations

Minimum description length

Which one is the best model?

- An equation with 8 parameters that explains 92% of observations
- A parametric function with 12M parameters trained on 1M samples that explains 96% of observations

The answer depends on:

- Your goal
 - Predict
 - Understand
- The cost of
 - Making inaccurate predictions
 - Computation
 - Training (a.k.a. Parameter estimation)
 - Inference
 - Collecting data samples

• ..

These criteria can be unified using minimum description length DL(data) = DL(model) + DL(data|model)