# Neuro-Symbolic Artificial Intelligence Chapter 3 Propositional Logic

Nils Holzenberger

March 5, 2024



#### Outline

- Logic
- 2 The language of logic
- 3 Automated theorem proving
  - Problem statement
  - Rewriting
  - In Prolog
- 4 Axiomatics



### Outline

- Logic
- 2 The language of logic
- 3 Automated theorem proving
  - Problem statement
  - Rewriting
  - In Prolog
- 4 Axiomatics



# What is logic good for?



- Represent logic and knowledge
- Represent argumentation
- Mechanize reasoning

# What is logic good for?

- Computer science
- Automated theorem proving
- Proofs of programs
- Al and reasoning
  - Argumentation
  - High-level NLP
- Electronics
- Database management
- Knowledge representation & semantic Web

- Cognitive science
  - Human cognition
  - Proof automated proof
- Contradiction
  - Anomaly detection
  - Explanation (XAI)
- Relevance
  - No continuity
  - Reason vs guess
- Basic in many curriculums

# History

⚠ Logic, reasoning and argumentation are universal human abilities. In this lecture, *logic* is a formal system, which can be used to *model* human reasoning and argumentation.

- Ancient greeks
  - Stoics
  - Aristotle: syllogism and argumentation
- Medieval logic
  - William of Ockham (1288-1348)
  - de Morgan's laws
  - Ternary logic
- Traditional logic
  - Port Royal's logic
  - Antoine Arnauld & Pierre Nicole (1662)
  - Logic of propositions

- Modern Logic
  - Descartes, Leibniz
  - George Boole (1848)
  - Gottlob Frege: Begriffschrift (1879), quantification
  - Charles Peirce
  - Giuseppe Peano: logical axiomatization of arithmetics
  - Bertrand Russell & Alfred N. Whitehead (1925): logical axiomatization of mathematics

#### Outline

- Logic
- The language of logic
- 3 Automated theorem proving
  - Problem statement
  - Rewriting
  - In Prolog
- 4 Axiomatics



## Symbols

Logic is about syntax and semantics

Syntax: how to manipulate symbols

Semantics: what meaning the symbols have

The use of these words is specific to logic!

## Syntax

- Alphabet
  - Propositional symbols: p in a∨ p
  - Constants: T and ⊥
  - Connectors: ¬ (1-place), ∧ (2-place), ∨ (2-place)...
- Atomic formula: constants and connectors
- Propositional formula
  - Atomic formula
  - If F is a formula, then  $(\neg F)$  is a formula
  - ullet If ullet is a connector, and A and B are formulas, then (A ullet B) is a formula

The sets of atomic formulas and propositional formulas are the smallest sets having these properties.

⚠ None of those things above may be said to be "true" or "false". That pertains to the semantics.

|   |                  |   | A or B | A implies B |
|---|------------------|---|--------|-------------|
| Т | Т                | Т | Т      | Т           |
| Т | T<br>F<br>T<br>F | F | Τ      | F           |
| F | T                | F | Τ      | T           |
| F | F                | F | F      | T           |

Each of these lines is a *valuation* of the logical propositions. It's a mapping of the symbols to "true" or "false".

|   |                  |   | A or B | A implies B |
|---|------------------|---|--------|-------------|
| Т | Т                | Т | Т      | Т           |
| Τ | T<br>F<br>T<br>F | F | T      | F           |
| F | Т                | F | T      | Т           |
| F | F                | F | F      | T           |

Each of these lines is a *valuation* of the logical propositions. It's a mapping of the symbols to "true" or "false".

How many 2-place connectors can I invent?

|             |   |   | A or B | A implies B |
|-------------|---|---|--------|-------------|
| Т           | Т | Т | Т      | Т           |
| T           | F | F | Τ      | F           |
| F           | Т | F | Τ      | Т           |
| T<br>T<br>F | F | F | F      | Т           |

Each of these lines is a *valuation* of the logical propositions. It's a mapping of the symbols to "true" or "false".

How many 2-place connectors can I invent?

6 of the 2-place connectors are trivial, which ones?

|             |   |   | A or B | A implies B |
|-------------|---|---|--------|-------------|
| Т           | Т | Т | Т      | Т           |
| T<br>T<br>F | F | F | Т      | F           |
| F           | Т | F | Τ      | Т           |
| F           | F | F | F      | Т           |

Each of these lines is a *valuation* of the logical propositions. It's a mapping of the symbols to "true" or "false".

How many 2-place connectors can I invent?

6 of the 2-place connectors are trivial, which ones?

What about 3-place connectors?



#### Valuation

This is where *semantics* come into play. A *valuation* assigns "true" or "false" to propositional symbols and to propositional formulas.  $v : F \rightarrow \{\text{True}, \text{False}\}\$ 

#### Valuation

This is where *semantics* come into play. A *valuation* assigns "true" or "false" to propositional symbols and to propositional formulas.

$$v: F \rightarrow \{\text{True}, \text{False}\}\$$

A valuation v must be consistent:

$$v(T) = True$$

$$v(\perp) = \text{False}$$

$$v(\neg F) = \text{Not } v(F)$$

$$v((A \bullet B)) = v(A) \blacksquare v(B)$$

Syntax and semantics look very similar, so we use different symbols to avoid confusion.



#### Valuation

This is where *semantics* come into play. A *valuation* assigns "true" or "false" to propositional symbols and to propositional formulas.  $v: F \to \{\text{True False}\}$ 

| $V: I \to \{\text{frue}, \text{raise}\}$    |              |               |
|---------------------------------------------|--------------|---------------|
| A valuation <i>v</i> must be consistent:    | Syntactic    | Semantic      |
|                                             | connective • | connective ■  |
| v(T) = True                                 |              | Not           |
|                                             | ٨            | And           |
| $v(\perp)$ = False                          | V            | Or            |
|                                             | ⊃            | $\Rightarrow$ |
| $v(\neg F) = \text{Not } v(F)$              | $\subset$    | ←             |
|                                             | =            | ⇔             |
| $v((A \bullet B)) = v(A) \blacksquare v(B)$ | <b>↑</b>     | Nand          |
|                                             | $\downarrow$ | Nor           |
| Syntax and semantics look very similar, so  | ⊅            | <b>≯</b>      |
| we use different symbols to avoid           | ⊄            | <b>≠</b>      |
| confusion.                                  |              |               |

A propositional formula X is a tautology if for any valuation v, v(X) = True

A tautology evaluates to True regarless of what its components evaluate to.

A propositional formula X is a tautology if for any valuation v, v(X) = True

A tautology evaluates to True regarless of what its components evaluate to.

A set S of propositional formulas is *satisfiable* if some valuation  $v_0$  maps every member of S to True:  $\forall X \in S$ ,  $v_0(X) = \text{True}$ 

SAT problem: given S, find  $v_0$ .

A propositional formula X is a tautology if for any valuation v, v(X) = True

A tautology evaluates to True regarless of what its components evaluate to.

A set S of propositional formulas is *satisfiable* if some valuation  $v_0$  maps every member of S to True:  $\forall X \in S$ ,  $v_0(X) = \text{True}$ 

SAT problem: given S, find  $v_0$ .

X is a tautology iff  $(\neg X)$  is not satisfiable.

A propositional formula X is a tautology if for any valuation v, v(X) = True

A tautology evaluates to True regarless of what its components evaluate to.

A set S of propositional formulas is *satisfiable* if some valuation  $v_0$  maps every member of S to True:  $\forall X \in S$ ,  $v_0(X) = \text{True}$ 

SAT problem: given S, find  $v_0$ .

X is a tautology iff  $(\neg X)$  is not satisfiable.

Why do we need this? We will see later that proving a theorem is equivalent to proving a tautology. (Specifically, proving  $S \vdash X$  is like proving that  $(\neg(S \cup \{\neg X\}))$  is a tautology.)



## Tautologies

- Show that X is a tautology iff  $X \equiv T$  is a tautology
- Show that X is a tautology iff  $T \supset X$  is a tautology
- Show that  $(\neg(X \land Y)) \equiv (\neg X \lor \neg Y)$  is a tautology
- Show that  $(\neg(X \lor Y)) \equiv (\neg X \land \neg Y)$  is a tautology
- Show that  $(P \land (Q \lor R)) \equiv ((P \land Q) \lor (P \land R))$  is a tautology
- Show that  $(P \lor (Q \land R)) \equiv ((P \lor Q) \land (P \lor R))$  is a tautology

# **Tautologies**

- Show that X is a tautology iff  $X \equiv T$  is a tautology
- Show that X is a tautology iff  $T \supset X$  is a tautology
- Show that  $(\neg(X \land Y)) \equiv (\neg X \lor \neg Y)$  is a tautology
- Show that  $(\neg(X \lor Y)) \equiv (\neg X \land \neg Y)$  is a tautology
- Show that  $(P \land (Q \lor R)) \equiv ((P \land Q) \lor (P \land R))$  is a tautology
- Show that  $(P \lor (Q \land R)) \equiv ((P \lor Q) \land (P \lor R))$  is a tautology
- This is cumbersome because we need to build truth tables. In a minute we'll see how to do it without tables.

# X is a tautology iff $T \supset X$ is a tautology

Let's show that X is a tautology iff  $T \supset X$  is a tautology.

First, notice that, for any valuation v:

$$v(T \supset X) = v(T) \Rightarrow v(X) = \text{True} \Rightarrow v(X)$$

Using a truth table, you can show that  $\text{True} \Rightarrow v(X)$  is equal to v(X).

So for any valuation  $v: v(T \supset X) = v(x)$ .

Now let's show that if X is a tautology then  $T\supset X$  is a tautology: Let v be a valuation. Then  $v(T\supset X)=v(X)=$  True, the last equality being a consequence of X being a tautology.

Now let's show that if X is not a tautology then  $T\supset X$  is not a tautology: X is not a tautology so there exists a valuation u such that u(X)= False. Consequently  $u(T\supset X)=u(X)=$  False so  $T\supset X$  is not a tautology.

Logical consequence:  $S \models X$ 

If a valuation assigns True to all elements in S, then it will assign True to X.

Logical consequence:  $S \models X$ 

If a valuation assigns True to all elements in S, then it will assign True to X.

 $\models X$  means that X is a tautology.



Logical consequence:  $S \models X$ 

If a valuation assigns True to all elements in S, then it will assign True to X.

 $\models X$  means that X is a tautology.

This is closer to our use of logic: we're only interested in the conclusions X that we can derive from assumptions S that we know to be true.

- Show that if  $S \models X$  then  $S \cup \{\neg X\}$  is not satisfiable. *lab session*
- Show the reciprocal.
- Ex falso quodlibet sequitur: Let S be a set of formulas, and A a formula such that  $A \in S$  and  $(\neg A) \in S$ . Show that  $\forall X, S \models X$
- Conversely, if  $\forall X, S \models X$ , show that S is not satisfiable.
- Monotony: show that  $S \models X$  implies  $S \cup \{A\} \models X$  lab session
- Deduction: show that  $S \cup \{X\} \models Y \text{ iff } S \models (X \supset Y)$  lab session

#### Outline

- Logic
- 2 The language of logic
- 3 Automated theorem proving
  - Problem statement
  - Rewriting
  - In Prolog
- 4 Axiomatics



The goal of automated theorem proving is to show things like  $S \models X$  where X is a theorem and S are a set of assumptions.

The goal of automated theorem proving is to show things like  $S \models X$  where X is a theorem and S are a set of assumptions.

We saw that this is equivalent to proving that  $(\neg(S \cup \{\neg X\}))$  is a tautology.

So our goal is to prove tautologies.

The goal of automated theorem proving is to show things like  $S \models X$  where X is a theorem and S are a set of assumptions.

We saw that this is equivalent to proving that  $(\neg(S \cup \{\neg X\}))$  is a tautology.

So our goal is to prove tautologies.

Problem: we'll need to build gigantic truth tables to check all possible valuations.

The goal of automated theorem proving is to show things like  $S \models X$  where X is a theorem and S are a set of assumptions.

We saw that this is equivalent to proving that  $(\neg(S \cup \{\neg X\}))$  is a tautology.

So our goal is to prove tautologies.

Problem: we'll need to build gigantic truth tables to check all possible valuations.

Solution: valuations map syntax to semantics. Instead, stay in the space of syntax. This means modifying the syntax of the formula without modifying its semantics, until computing the valuation becomes trivial.

## Replacement procedure

Define a procedure P such that if  $(X \equiv Y)$  is a tautology, then  $P(X) \equiv P(Y)$  is a tautology.

This is a syntactic rewriting that preserves the property of being a tautology.



## Normal form for negation

- A formula is in normal form for negation if the negation symbol ¬ only occurs in front of symbols
  - $(\neg X \lor Y)$  is in normal form for negation
  - $(\neg(X \land Y))$  is not
- Use the following tautologies to rewrite negations:
  - $(\neg(\neg X)) \equiv X$
  - $\bullet (\neg (X \lor Y)) \equiv ((\neg X) \land (\neg Y))$
  - $\bullet (\neg (X \land Y)) \equiv ((\neg X) \lor (\neg Y))$



# Generalized disjunction/conjunction

Define two new operators, that don't belong to the propositional language:



## Generalized disjunction/conjunction

Define two new operators, that don't belong to the propositional language:

$$[X_1, X_2, ..., X_n]$$
 is the generalized disjunction of  $X_1, X_2, ..., X_n$ 

For any valuation 
$$v$$
,  $v([X_1, X_2, ..., X_n]) = \text{False iff } \forall i \in [1, n], \ v(X_i) = \text{False}$ 

$$v([]) = \text{False}$$
  $X_1 \text{ or } X_2 \text{ or } \dots \text{ or } X_n$ 

## Generalized disjunction/conjunction

Define two new operators, that don't belong to the propositional language:

$$[X_1, X_2, ..., X_n]$$
 is the generalized disjunction of  $X_1, X_2, ..., X_n$ 

For any valuation 
$$v$$
,  $v([X_1, X_2, ..., X_n]) = \text{False iff } \forall i \in [1, n], v(X_i) = \text{False}$ 

$$v([]) = \text{False}$$
 " $X_1 \text{ or } X_2 \text{ or } \dots \text{ or } X_n$ "

$$< X_1, X_2, ..., X_n >$$
 is the generalized conjunction of  $X_1, X_2, ..., X_n$ 

For any valuation 
$$v$$
,  $v(\langle X_1, X_2, ..., X_n \rangle) = \text{True}$  iff  $\forall i \in [1, n], \ v(X_i) = \text{True}$ 

$$v(<>) = True$$
 " $X_1$  and  $X_2$  and ... and  $X_n$ "

<ロ > → □ > → □ > → □ > → □ ● → ○ へ ○ ○ March 5, 2024

### Conjunctive normal form

Let F be a propositional formula. Its *conjunctive normal form* is a rewriting of F as

$$< C_1, C_2, ..., C_i, ..., C_n >$$

where each  $C_i$  is of the form  $[X_1, X_2, ..., X_{n_i}]$ .  $C_i$  is a *clause*.

The disjunctive normal form is the same thing mutandem mutandis.



# Conjunctive normal form

How do we get the conjunctive normal form? Use the following tautologies:

$$\neg (X \land Y) \equiv \neg X \lor \neg Y$$

• 
$$X\supset Y\equiv \neg X\vee Y$$

$$\bullet \neg X \supset Y \equiv X \land \neg Y$$

• 
$$X \subset Y \equiv X \vee \neg Y$$

$$\neg X \subset Y \equiv \neg X \wedge Y$$

• 
$$X \uparrow Y \equiv \neg X \lor \neg Y$$

• 
$$\neg X \uparrow Y \equiv X \land Y$$

$$\neg (X \lor Y) \equiv \neg X \land \neg Y$$

• 
$$X \downarrow Y \equiv \neg X \land \neg Y$$

• 
$$\neg X \downarrow Y \equiv X \lor Y$$

• 
$$X \not\supset Y \equiv X \land \neg Y$$

• 
$$X \not\subset Y \equiv \neg X \land Y$$

• 
$$\neg X \not\subset Y \equiv X \lor \neg Y$$

## Rewriting algorithm

Rewriting a disjunction:

Replace 
$$< ...[...P...]...>$$
 with  $< ...[...A, B...]...>$ 

Rewriting a conjunction:

Replace 
$$< ...[...P...]...>$$
 with  $< ...[...A...], [...B...]...>$ 

Rewriting a negation:

Replace 
$$< ...[...\neg(\neg P)...]...>$$
 with  $< ...[...P...]...>$ 



$$\bullet < [((A \supset B) \supset (A \supset C))] >$$

- $\bullet < [((A \supset B) \supset (A \supset C))] >$
- $\bullet < [\neg (A \supset B) \lor (A \supset C)] >$

- $\bullet < [((A \supset B) \supset (A \supset C))] >$
- $\bullet < [\neg (A \supset B) \lor (A \supset C)] >$
- $\bullet$  <  $[\neg(A \supset B), (A \supset C)]$  >

- $\bullet < [((A \supset B) \supset (A \supset C))] >$
- $\bullet < [\neg (A \supset B) \lor (A \supset C)] >$
- $\bullet < [\neg (A \supset B), (A \supset C)] >$
- $\bullet$  <  $[(A \land \neg B), (A \supset C)] >$

- $\bullet < [((A \supset B) \supset (A \supset C))] >$
- $\bullet < [\neg (A \supset B) \lor (A \supset C)] >$
- $\bullet < [\neg (A \supset B), (A \supset C)] >$
- < [ $(A \land \neg B), (A \supset C)$ ] >
- $\bullet < [A, (A \supset C)], [\neg B, (A \supset C)] >$

- $\bullet < [((A \supset B) \supset (A \supset C))] >$
- $\bullet < [\neg (A \supset B) \lor (A \supset C)] >$
- $\bullet < [\neg (A \supset B), (A \supset C)] >$
- < [ $(A \land \neg B), (A \supset C)$ ] >
- $\bullet < [A, (A \supset C)], [\neg B, (A \supset C)] >$
- $\bullet < [A, (\neg A \lor C)], [\neg B, (A \supset C)] >$

- $\bullet < [((A \supset B) \supset (A \supset C))] >$
- $\bullet < [\neg (A \supset B) \lor (A \supset C)] >$
- $\bullet < [\neg (A \supset B), (A \supset C)] >$
- $\bullet < [(A \land \neg B), (A \supset C)] >$
- $\bullet < [A, (A \supset C)], [\neg B, (A \supset C)] >$
- $\bullet < [A, (\neg A \lor C)], [\neg B, (A \supset C)] >$
- < [A,  $\neg A$ , C], [ $\neg B$ , ( $A \supset C$ )] >

- $\bullet < [((A \supset B) \supset (A \supset C))] >$
- $\bullet < [\neg (A \supset B) \lor (A \supset C)] >$
- $\bullet < [\neg (A \supset B), (A \supset C)] >$
- $\bullet < [(A \land \neg B), (A \supset C)] >$
- $\bullet < [A, (A \supset C)], [\neg B, (A \supset C)] >$
- $\bullet < [A, (\neg A \lor C)], [\neg B, (A \supset C)] >$
- $\bullet < [A, \neg A, C], [\neg B, (A \supset C)] >$
- $< [A, \neg A, C], [\neg B, \neg A, C] >$

Conjunctive normal form of  $((A \supset B) \supset (A \supset C))$ (knowing that  $(X \supset Y) \equiv (\neg X \lor Y)$  and  $(\neg (X \supset Y)) \equiv (X \land \neg Y)$ )

- $\bullet < [((A \supset B) \supset (A \supset C))] >$
- $\bullet < [\neg (A \supset B) \lor (A \supset C)] >$
- $\bullet < [\neg (A \supset B), (A \supset C)] >$
- < [ $(A \land \neg B), (A \supset C)$ ] >
- < [A,(A  $\supset$  C)],[ $\neg B$ ,(A  $\supset$  C)] >
- $\bullet < [A, (\neg A \lor C)], [\neg B, (A \supset C)] >$
- $\bullet$  <  $[A, \neg A, C], [\neg B, (A \supset C)] >$
- $< [A, \neg A, C], [\neg B, \neg A, C] >$

Note that the first clause will always evaluate to True. So we can rewrite the original formula as



Conjunctive normal form of  $((A \supset B) \supset (A \supset C))$ (knowing that  $(X \supset Y) \equiv (\neg X \lor Y)$  and  $(\neg (X \supset Y)) \equiv (X \land \neg Y)$ )

- $\bullet < [((A \supset B) \supset (A \supset C))] >$
- $\bullet < [\neg (A \supset B) \lor (A \supset C)] >$
- $\bullet < [\neg (A \supset B), (A \supset C)] >$
- < [ $(A \land \neg B), (A \supset C)$ ] >
- $\bullet < [A, (A \supset C)], [\neg B, (A \supset C)] >$
- $\bullet < [A, (\neg A \lor C)], [\neg B, (A \supset C)] >$
- $< [A, \neg A, C], [\neg B, (A \supset C)] >$
- $\bullet$  < [A,  $\neg$ A, C], [ $\neg$ B,  $\neg$ A, C] >

Note that the first clause will always evaluate to True. So we can rewrite the original formula as  $< [\neg B, \neg A, C] >$  without changing its truth value. That's a purely *syntactic* rewriting.

• A sequence is a conjunction of lines



- A sequence is a conjunction of lines
- Each *line* is a generalized disjunction (a clause)

- A sequence is a conjunction of lines
- Each line is a generalized disjunction (a clause)
- *Growth* of the sequence:
  - if a clause reads as  $[...(\beta_1 \vee \beta_2)...]$ , insert a new line:  $[...\beta_1,\beta_2...]$
  - if a clause reads as  $[...(\alpha_1 \wedge \alpha_2)...]$ , insert two new lines:  $[...\alpha_1...]$  and  $[...\alpha_2...]$
  - when adding new lines, replace  $\neg \neg X$  by X,  $\neg T$  by  $\bot$  and  $\neg \bot$  by T

- A sequence is a conjunction of lines
- Each line is a generalized disjunction (a clause)
- *Growth* of the sequence:
  - if a clause reads as  $[...(\beta_1 \vee \beta_2)...]$ , insert a new line:  $[...\beta_1,\beta_2...]$
  - if a clause reads as  $[...(\alpha_1 \wedge \alpha_2)...]$ , insert two new lines:  $[...\alpha_1...]$  and  $[...\alpha_2...]$
  - when adding new lines, replace  $\neg \neg X$  by X,  $\neg T$  by  $\bot$  and  $\neg \bot$  by T
- Resolution: from lines [A, X, B] and  $[C, \neg X, D]$  create the line [A, B, C, D], i.e. concatenate the lines leaving aside all occurrences of X and of  $\neg X$

- A sequence is a conjunction of lines
- Each line is a generalized disjunction (a clause)
- *Growth* of the sequence:
  - if a clause reads as  $[...(\beta_1 \lor \beta_2)...]$ , insert a new line:  $[...\beta_1,\beta_2...]$
  - if a clause reads as  $[...(\alpha_1 \wedge \alpha_2)...]$ , insert two new lines:  $[...\alpha_1...]$  and  $[...\alpha_2...]$
  - when adding new lines, replace  $\neg \neg X$  by X,  $\neg T$  by  $\bot$  and  $\neg \bot$  by T
- Resolution: from lines [A, X, B] and  $[C, \neg X, D]$  create the line [A, B, C, D], i.e. concatenate the lines leaving aside all occurrences of X and of  $\neg X$
- a proof of X by resolution is a sequence starting with the  $[\neg X]$  line (goal) and ending with an empty clause [].
- X is a tautology if and only if X has a proof by resolution.

4 D > 4 A > 4 B > 4 B > B 9 Q C

Prove 
$$((A \supset B) \land (B \supset C)) \supset \neg(\neg C \land A)$$
  
(knowing that  $(X \supset Y) \equiv (\neg X \lor Y)$  and  $(\neg(X \supset Y)) \equiv (X \land \neg Y)$ )

Prove 
$$((A \supset B) \land (B \supset C)) \supset \neg(\neg C \land A)$$
  
(knowing that  $(X \supset Y) \equiv (\neg X \lor Y)$  and  $(\neg(X \supset Y)) \equiv (X \land \neg Y)$ )  
 $[\neg((A \supset B) \land (B \supset C)) \supset \neg(\neg C \land A)]$ 

Prove 
$$((A \supset B) \land (B \supset C)) \supset \neg(\neg C \land A)$$
  
(knowing that  $(X \supset Y) \equiv (\neg X \lor Y)$  and  $(\neg(X \supset Y)) \equiv (X \land \neg Y)$ )
$$[\neg((A \supset B) \land (B \supset C)) \supset \neg(\neg C \land A)]$$

$$[((A \supset B) \land (B \supset C))]$$

$$[\neg C \land A]$$

Prove 
$$((A \supset B) \land (B \supset C)) \supset \neg(\neg C \land A)$$
  
(knowing that  $(X \supset Y) \equiv (\neg X \lor Y)$  and  $(\neg(X \supset Y)) \equiv (X \land \neg Y)$ )

$$[\neg((A\supset B)\land (B\supset C))\supset \neg(\neg C\land A)]$$

$$[((A \supset B) \land (B \supset C))]$$
$$[\neg C \land A]$$

$$[(A \supset B)]$$
$$[(B \supset C)]$$
$$[\neg C \land A]$$

```
Prove ((A \supset B) \land (B \supset C)) \supset \neg(\neg C \land A)
(knowing that (X \supset Y) \equiv (\neg X \lor Y) and (\neg(X \supset Y)) \equiv (X \land \neg Y))
```

$$[\neg((A\supset B)\land (B\supset C))\supset \neg(\neg C\land A)]$$

$$[((A \supset B) \land (B \supset C))]$$
$$[\neg C \land A]$$

$$[(A \supset B)]$$
$$[(B \supset C)]$$

$$[\neg C \land A]$$

$$[\neg A, B]$$
$$[(B \supset C)]$$
$$[\neg C \land A]$$



```
Prove ((A \supset B) \land (B \supset C)) \supset \neg (\neg C \land A)
(knowing that (X \supset Y) \equiv (\neg X \lor Y) and (\neg (X \supset Y)) \equiv (X \land \neg Y))
 [\neg((A\supset B)\land(B\supset C))\supset\neg(\neg C\land A)]
                                                                      [\neg A, B]
                                                                      [\neg B, C]
                                                                      [\neg C \land A]
 [((A\supset B)\land (B\supset C))]
 [\neg C \land A]
 [(A\supset B)]
 [(B\supset C)]
 [\neg C \land A]
 [\neg A, B]
 [(B\supset C)]
```

 $[\neg C \land A]$ 

```
Prove ((A \supset B) \land (B \supset C)) \supset \neg(\neg C \land A)
(knowing that (X \supset Y) \equiv (\neg X \lor Y) and (\neg(X \supset Y)) \equiv (X \land \neg Y))
```

$$[\neg((A \supset B) \land (B \supset C)) \supset \neg(\neg C \land A)]$$

$$[((A \supset B) \land (B \supset C))]$$

$$[\neg C \land A]$$

$$\begin{array}{c}
(A \supset B) \\
(B \supset C) \\
[\neg C \land A]
\end{array}$$

$$[\neg A, B]$$
$$[(B \supset C)]$$
$$[\neg C \land A]$$

 $[\neg A, B]$ 

 $[\neg B, C]$  $[\neg C \land A]$ 

\_\_\_\_ [¬*A*, *B*]

 $[\neg B, C]$ 

 $[\neg C]$ 

[*A*]

Prove 
$$((A \supset B) \land (B \supset C)) \supset \neg (\neg C \land A)$$
  
(knowing that  $(X \supset Y) \equiv (\neg X \lor Y)$  and  $(\neg (X \supset Y)) \equiv (X \land \neg Y)$ )
$$\begin{bmatrix} \neg ((A \supset B) \land (B \supset C)) \supset \neg (\neg C \land A) \end{bmatrix} & [\neg A, B] \\ \hline ((A \supset B) \land (B \supset C)) \end{bmatrix} & [\neg B, C] \\ \hline [\neg C \land A] & \hline [\neg A, B] \\ \hline ((A \supset B)) & [\neg B, C] \\ \hline [(A \supset B)] & [\neg B, C] \\ \hline [(B \supset C)] & [\neg C]$$

$$[\neg A, B]$$
$$[(B \supset C)]$$
$$[\neg C \land A]$$

 $[\neg C \land A]$ 

[¬B, C] [¬C]

[A]

```
Prove ((A \supset B) \land (B \supset C)) \supset \neg (\neg C \land A)
(knowing that (X \supset Y) \equiv (\neg X \lor Y) and (\neg (X \supset Y)) \equiv (X \land \neg Y))
 [\neg((A\supset B)\land(B\supset C))\supset\neg(\neg C\land A)]
                                                                           [\neg A, B]
                                                                                                            \lceil \neg C \rceil
                                                                                                            [C]
                                                                           [\neg B, C]
 [((A\supset B)\land (B\supset C))]
                                                                           [\neg C \land A]
 [\neg C \land A]
                                                                           [\neg A, B]
 [(A\supset B)]
                                                                           [\neg B, C]
 [(B\supset C)]
                                                                           \lceil \neg C \rceil
 [\neg C \land A]
                                                                           [A]
 [\neg A, B]
                                                                           [\neg B, C]
 [(B\supset C)]
                                                                           \lceil \neg C \rceil
```

 $[\neg C \land A]$ 

[*B*]

Prove 
$$((A \supset B) \land (B \supset C)) \supset \neg(\neg C \land A)$$
  
(knowing that  $(X \supset Y) \equiv (\neg X \lor Y)$  and  $(\neg(X \supset Y)) \equiv (X \land \neg Y)$ )
$$\begin{bmatrix} \neg((A \supset B) \land (B \supset C)) \supset \neg(\neg C \land A) \end{bmatrix} & [\neg A, B] & [\neg C] \\ [\neg B, C] & [C] \\ [\neg C \land A] & [\neg C \land A] \end{bmatrix}$$

$$\begin{bmatrix} \neg C \land A \end{bmatrix} & [\neg A, B] \\ [(A \supset B)] & [\neg A, B] \\ [(A \supset B)] & [\neg B, C] \\ [(B \supset C)] & [\neg C] \\ [\neg C \land A] & [A] \end{bmatrix}$$

$$\begin{bmatrix} \neg A, B \end{bmatrix} & [\neg B, C] \\ [\neg B, C] \\ [\neg C \land A] & [A] \end{bmatrix}$$

$$\begin{bmatrix} \neg A, B \end{bmatrix} & [\neg B, C] \\ [\neg C \land A] & [B] \end{bmatrix}$$

Prove 
$$((A \supset B) \land (B \supset C)) \supset \neg (\neg C \land A)$$
  
(knowing that  $(X \supset Y) \equiv (\neg X \lor Y)$  and  $(\neg (X \supset Y)) \equiv (X \land \neg Y)$ )

$$[\neg ((A \supset B) \land (B \supset C)) \supset \neg (\neg C \land A)] \qquad [\neg A, B] \qquad [\neg C]$$

$$[((A \supset B) \land (B \supset C))] \qquad [\neg B, C] \qquad [C]$$

$$[\neg (A \supset B) \land (B \supset C))] \qquad [\neg C \land A] \qquad [\neg C \land A]$$

$$[\neg C \land A] \qquad [\neg A, B]$$

$$\frac{[(A \supset B)]}{[(B \supset C)]}$$

$$[\neg C \land A]$$

 $[\neg B, C]$ 

[¬*C*]

[*B*]

Done. We didn't need a truth table!

$$[\neg A, B]$$
$$[(B \supset C)]$$
$$[\neg C \land A]$$

# Example in Prolog

```
A :- B turns into [A, \neg B]
                                     [parent(marge, marge)]
                                     [parent(clancy, marge)]
parent(marge, bart).
                                     [grandparent(X,Y), \neg parent(X,Z),
                                     \neg parent(Z,Y)]
parent(clancy, marge).
                                     [¬ grandparent(clancy,bart)]
grandparent(X,Y) :-
         parent(X,Z),
         parent(Z,Y).
?- grandparent(clancy,bart)
```

### Outline

- Logic
- 2 The language of logic
- 3 Automated theorem proving
  - Problem statement
  - Rewriting
  - In Prolog
- 4 Axiomatics



#### ⊢ vs ⊨

Logical consequence:  $S \models X$ 

If a valuation assigns True to all elements in S, then it will assign True to X.

⊨ is a *semantic deduction*, typically involving truth tables.

 $\vdash$  is a *syntactic deduction*, typically involving proof by resolution.

## Theorem proving

 An axiomatic system is a proof system. For example the Hilbert system:

```
• (X \supset (Y \supset X))

• (X \supset (Y \supset Z)) \supset ((X \supset Y) \supset (X \supset Z))

• (\bot \supset X)

• (X \supset T)

• (\lnot \lnot X \supset X)

• (X \supset (\lnot X \supset Y))

• ((A \land B) \supset A)

• ((A \land B) \supset B)

• ((A \supset X) \supset ((B \supset X) \supset ((A \lor B) \supset X)))
```

- inference rule (modus ponens) :  $\frac{X(X \supset Y)}{Y}$
- This can be used to produce new theorems, through forward chaining
- In contrast, proof by resolution is backward chaining



### Soundness

Axiomatic systems define  $\vdash$  and  $\models$ . An axiomatic system is *sound* if:

Let F be a propositional formula and S a set of propositional formulas.

If there is a sequence that derives from  $S \cup \{\neg F\}$  and that contains the empty clause, then  $S \models F$ .

In other words if  $S \vdash F$  then  $S \models F$ .



### Completeness

Axiomatic systems define  $\vdash$  and  $\models$ . An axiomatic system is *complete* if:

Let F be a propositional formula and S a set of propositional formulas.

If  $S \models F$ , then there is a sequence that derives from  $S \cup \{\neg F\}$  and that contains the empty clause.

Completeness is the converse of soundness: if  $S \models F$  then  $S \vdash F$ .

### Gödel's PhD thesis

Resolution is sound and complete for first-order logic

