Neuro-Symbolic Artificial Intelligence

Nils Holzenberger

February 15, 2024
Outline

1. Neuro-Symbolic AI
 - Symbolic AI
 - Neural AI
 - Neuro-Symbolic AI?
 - Neuro-Symbolic AI in Machine Learning

2. Course overview + logistics

3. Prolog
 - History
 - The Simpsons
 - Objects in Prolog
 - Unification in Prolog
 - Operators
 - Lists
 - Prolog resolution strategy
What is AI?
What is AI?

- Tasks
- Computers
- Cognitive objects
Examples

- I'm listening.
Examples

- I'm listening.
- Deep Blue (chess)
- Eliza (chatbot)
Characteristics

- Works with symbolic knowledge (e.g. logical rules, grammars)
- Time as discrete order (e.g. loop index)
- Explicit representations (e.g. predicates, phrases)
- Explicit inferences (e.g. logical deduction, rewriting)
- Perfect matches
- Combinatorial (algorithms)
- Definite errors
- Interpretability (generally, execution trace)
- Non-continuous (no topology)
Characteristics

- Works with symbolic knowledge (e.g. logical rules, grammars)
- Time as discrete order (e.g. loop index)
- Explicit representations (e.g. predicates, phrases)
- Explicit inferences (e.g. logical deduction, rewriting)
- Perfect matches
- Combinatorial (algorithms)
- Definite errors
- Interpretability (generally, execution trace)
- Non-continuous (no topology)
Strengths
Strengths

- Processes structures
- Interpretability (XAI, find relevant explanations)
- (Re)-use of background knowledge (e.g. 80 km/h)
- Manages strict constraints
- May reach perfection
- Manages relations (right_of, borrow)
- Instant adaptation to context (*here*, *for a long time*)
- May imitate some cognitive processes (argumentation)
- May solve combinatorial problems (planning)
Weaknesses
Weaknesses

- Can’t be fed with raw data
- Doesn’t (always) scale up
- Highly sensitive to errors (garbage in, garbage out)
- Easy to fool
- Requires a lot of design
Examples
Examples

- GPT-3 (neural language model)
- AlphaZero (go)
Characteristics

- Also called distributed AI, connectionist AI
Characteristics

- Also called distributed AI, connectionist AI
- Uses a neural network to approximate a function
- Relies on data to fit the parameters of the neural network
- Uses probabilistic modeling, i.e. uses tools from statistical machine learning
Neuro-Symbolic AI

Strengths

The neural network can approximate any function! In particular those hard to describe with symbols.

The approximation of the function gets better with more data (PAC learnability).

In practice, it has proven more effective than symbolic systems, whenever the problem required the use of a lot of background knowledge and heuristics (see knowledge bottleneck).

Nils Holzenberger
Strengths

- The neural network can approximate any function! In particular those hard to describe with symbols
- The approximation of the function gets better with more data (PAC learnability)
- In practice, it has proven more effective than symbolic systems, whenever the problem required the use of a lot of background knowledge and heuristics (see knowledge bottleneck)
Weaknesses

- Doesn't avoid the problem of structure — the neural network's inputs and outputs must be processed.
- Doesn't (always) scale up.
- Sensitive to data quality.
- Sensitive to input (adversarial inputs).
- Computationally intensive at inference time, and even more at training time.
Weaknesses

- Doesn’t avoid the problem of structure — the neural network’s inputs and outputs must be processed
- Doesn’t (always) scale up
- Sensitive to data quality
- Sensitive to input (adversarial inputs)
- Computationally intensive at inference time, and even more at training time
Examples

- IBM Watson (won at Jeopardy in 2012)
- Speech acquisition (a few slides from now)
Characteristics

- Uses symbolic AI as a framework
- Uses neural AI to approximate certain functions
- With that definition, almost every instance of neural AI is also neuro-symbolic (counter-example: GPT models)
Strengths and Weaknesses

Strengths = Strengths of symbolic AI \cup \text{Strengths of neural AI}
Weaknesses = Weaknesses of symbolic AI \cap \text{Weaknesses of neural AI}
Challenges

- Knowing enough about both symbolic and neural AI
- Training the neural network
- Interface between discrete and continuous
Google searches

Interest over time

Note:

Feb 17, 20...
Aug 16, 2020
Feb 13, 2022
Aug 13, 2023
Neuro-Symbolic Artificial Intelligence

Workshop series on Neural-Symbolic Learning and Reasoning

Steering Committee (Neural-Symbolic Learning and Reasoning Association)

- Artur d'Avila Garcez (President)
- Daniel Silver (Vice President)
- Pascal Hitzler
- Peter Földiák (Treasurer)
- Kai-Uwe Kühnberger
- Luis C. Lamb
- Luc de Raedt

Further information pertaining to the Steering Committee and the Association.

NeSy Workshops and Seminars:

- NeSy 2023, 17th International Workshop on Neural-Symbolic Learning and Reasoning.
- NeSy 2022, Sixteenth International Workshop on Neural-Symbolic Learning and Reasoning at IJCLR 2022
- NeSy'20/21, Fifteenth International Workshop on Neural-Symbolic Learning and Reasoning at IJCLR-20/21 - online recordings
- NeSy'19, Fourteenth International Workshop on Neural-Symbolic Learning and Reasoning at IJCAI-19
- NeSy'18, Thirteenth International Workshop on Neural-Symbolic Learning and Reasoning at HLAI-18
- NeSy'17, Twelfth International Workshop on Neural-Symbolic Learning and Reasoning
- NeSy'16, Eleventh International Workshop on Neural-Symbolic Learning and Reasoning at HLAI 2016
- NeSy'15, Tenth International Workshop on Neural-Symbolic Learning and Reasoning at IJCAI-15
- NeSy'13, Ninth International Workshop on Neural-Symbolic Learning and Reasoning at IJCAI-13
- NeSy'12, Eighth International Workshop on Neural-Symbolic Learning and Reasoning at AAAI-12
- NeSy'11, Seventh International Workshop on Neural-Symbolic Learning and Reasoning at IJCAI-11
- NeSy'10, Sixth International Workshop on Neural-Symbolic Learning and Reasoning at AAAI-10
- NeSy'09, Fifth International Workshop on Neural-Symbolic Learning and Reasoning at IJCAI-09
- NeSy'08, Fourth International Workshop on Neural-Symbolic Learning and Reasoning at ECAI-08
- NeSy'07, Third International Workshop on Neural-Symbolic Learning and Reasoning at IJCAI-07
- NeSy'06, Second International Workshop on Neural-Symbolic Learning and Reasoning at ECAI-06
- NeSy'05, First International Workshop on Neural-Symbolic Learning and Reasoning at IJCAI-05
Speech acquisition

- Infants learn speech effortlessly
Speech acquisition

- Infants learn speech effortlessly
- Language is a strange object:
 - it manipulates discrete units (words, syllables, phonemes...)
 - that are realized in a continuous space (acoustics)
 - rules to combine units have strict results (grammatical or not)
 - but the rules are hard to capture: meaning of words/symbols change in context
Speech acquisition

- Infants learn speech effortlessly
- Language is a strange object:
 - it manipulates discrete units (words, syllables, phonemes...)
 - that are realized in a continuous space (acoustics)
 - rules to combine units have strict results (grammatical or not)
 - but the rules are hard to capture: meaning of words/symbols change in context
- Is it possible to at least acquire the acoustic units that make up speech?
 - What is the problem? Allophones + speaker variability
 - Clustering?
 - Auto-encoder?
 - Auto-encoder with discrete units
Are Discrete Units Necessary for Spoken Language Modeling?

Tu Anh Nguyen, Benoit Sagot, and Emmanuel Dupoux

Abstract—Recent work in spoken language modeling shows the possibility of learning a language unsupervisedly from raw audio without any text labels. The approach relies first on transforming the audio into a sequence of discrete units (or pseudo-text) and then training a language model directly on such pseudo-text. Is such a discrete bottleneck necessary, potentially introducing irreversible errors in the encoding of the speech signal, or could we learn a language model without discrete units at all? In this work, we study the role of discrete versus continuous representations in spoken language modeling. We show that discretization is indeed essential for good results in spoken language modeling. We show that discretization removes linguistically irrelevant information from the continuous features, helping to improve language modeling performances. On the basis of this study, we train a language model on the discrete units of the HuBERT features, reaching new state-of-the-art results in the lexical, syntactic, and semantic metrics of the Zero Resource Speech Challenge 2021 (Track 1 - Speech
Speech acquisition

What was hard about this? Differentiating through the discretization
Are humans more like a neural network or like a symbolic program?

This debate is also fed by System 1 and System 2 in *Thinking, Fast and Slow* by Daniel Kahneman

Symbols and mental programs: a hypothesis about human singularity

Stanislas Dehaene, Fosca Ai Roumi, Yair Lakretz, Samuel Planton, and Mathias Sablé-Meyer

Natural language is often seen as the single factor that explains the cognitive singularity of the human species. Instead, we propose that humans possess multiple internal languages of thought, akin to computer languages, which encode and compress structures in various domains (mathematics, music, shape...). These languages rely on cortical circuits distinct from classical language areas. Each is characterized by: (i) the discretization of a domain using a small set of symbols, and (ii) their recursive composition into mental programs that encode nested repetitions with variations. In various tasks of elementary shape or sequence perception, minimum description length in the proposed languages captures human behavior and brain activity, whereas non-human primate data are captured by simpler nonsymbolic models. Our research argues in favor of discrete symbolic models of human thought.
Have you received the login info?
Have you done the first lab session?

https://ailab.r2.enst.fr/LKR

The course website will be updated with slides, lab sessions, answers to FAQ...
Course overview

<table>
<thead>
<tr>
<th>Date Range</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 Feb 2024 13:30 → 27 Feb 2024 13:30</td>
<td>Overview</td>
</tr>
<tr>
<td>27 Feb 2024 13:30 → 5 Mar 2024 13:30</td>
<td>First steps in Prolog</td>
</tr>
<tr>
<td>5 Mar 2024 13:30 → 12 Mar 2024 13:30</td>
<td>Problem solving and Knowledge representation</td>
</tr>
<tr>
<td>12 Mar 2024 13:30 → 19 Mar 2024 13:30</td>
<td>Propositional Logic</td>
</tr>
<tr>
<td>19 Mar 2024 13:30 → 26 Mar 2024 13:30</td>
<td>Predicate Logic</td>
</tr>
<tr>
<td>26 Mar 2024 13:30 → 2 Apr 2024 13:30</td>
<td>Symbolic machine learning</td>
</tr>
<tr>
<td>2 Apr 2024 13:30 → 9 Apr 2024 13:30</td>
<td>ProbLog: Probabilistic Prolog</td>
</tr>
<tr>
<td>9 Apr 2024 13:30 → 16 Apr 2024 13:30</td>
<td>Deep ProbLog: Neural Probabilistic Prolog</td>
</tr>
<tr>
<td></td>
<td>Neuro-Symbolic Programming</td>
</tr>
</tbody>
</table>
Validation

- lab sessions: answers are recorded and graded
- final quizz: 90 min, no documents, no functioning devices
- 1965: resolution (Robinson)
- 1980: Prolog acknowledged as a major A.I. language
- Now various versions (e.g. SWI-Prolog), some of them used in Constraint Programming
- 1977: Datalog
- pyDatalog, ProbLog, ProGol...
The Simpsons’ genealogy
The Simpsons' genealogy

\begin{verbatim}
parent(marge, lisa).
parent(marge, bart).
parent(marge, maggie).
parent(homer, lisa).
\end{verbatim}
The Simpsons’ genealogy

parent(marge, lisa).
parent(marge, bart).
parent(marge, maggie).
parent(homer, lisa).
parent(homer, bart).
parent(homer, maggie).
parent(abraham, homer).
parent(abraham, herb).
parent(mona, homer).
parent(jackie, marge).
parent(clancy, marge).
parent(jackie, patty).
parent(clancy, patty).
parent(jackie, selma).
parent(clancy, selma).
parent(selma, ling).
Some predicates

child(X, Y) :- parent(Y, X).
grandparent(X, Y) :- parent(X, Z), parent(Z, Y).
Some more facts

female(marge).
female(lisa).
male(bart).
female(maggie).
male(homer).
male(abraham).
male(herb).

female(mona).
female(jackie).
male(clancy).
female(patty).
female(selma).
female(ling).
Some more predicates

\[
\text{child}(X, Y) :- \\
\text{parent}(Y, X). \\
\text{grandparent}(X, Y) :- \\
\text{parent}(X, Z), \\
\text{parent}(Z, Y). \\
\text{mother}(X, Y) :- ? \\
\text{sister}(X, Y) :- ? \\
\text{ancestor}(X, Y) :- ? \\
\text{cousin}(X, Y) :- ?
\]
Basic objects

Integers
- 9

Floats
- 1.5

Strings
- "this is a string"

Atoms — definite objects
- marge_simpson

Variables — objects that can take on a definite value
- X
More complicated objects

Predicates — a bit like a boolean function

Operators — a special case of predicates

Terms — constant

Terms — structure

Terms — variable

Clauses — facts

Clauses — rules

parent/2

=marge_simpson

mother(marge_simpson, X)

Person

parent(homer, bart).

child(X, Y) :- parent(Y, X).
Objects

Definitions:

http://www.projog.org/prolog-introduction.html
Definition + example

- **Unification** takes two terms and checks whether they may be equivalent. Unification may succeed or fail. If it succeeds, variables may be bound together.

Examples

- Unification of X and 2 succeeds and returns $X=2$
- Unification of `parent(marge, lisa)` and `parent(Who, lisa)` succeeds and returns $Who=marge$
- Unification of `parent(Xvar, lisa)` and `parent(Who, lisa)` succeeds and returns $Xvar=Who$
- Unification of `parent(marge, lisa)` and `parent(bart, lisa)` fails
- Unification of `parent(marge, lisa)` and `child(lisa, marge)` fails
- Unification of `a(X, X)` and `a(2, 3)` fails

It is a basic building block of Prolog.
Definition + example

- *Unification* takes two terms and checks whether they may be equivalent. Unification may succeed or fail. If it succeeds, variables may be bound together.

Examples

- Unification of X and 2 succeeds and returns $X=2$
- Unification of `parent(marge, lisa)` and `parent(Who, lisa)` succeeds and returns $Who=marge$
- Unification of `parent(Xvar, lisa)` and `parent(Who, lisa)` succeeds and returns $Xvar=Who$
- Unification of `parent(marge, lisa)` and `parent(bart, lisa)` fails
- Unification of `parent(marge, lisa)` and `child(lisa, marge)` fails
- Unification of $a(X, X)$ and $a(2, 3)$ fails
Definition + example

- **Unification** takes two terms and checks whether they may be equivalent. Unification may succeed or fail. If it succeeds, variables may be bound together.

- **Examples**
 - Unification of X and 2 succeeds and returns $X=2$
 - Unification of `parent(marge, lisa)` and `parent(Who, lisa)` succeeds and returns $Who=marge$
 - Unification of `parent(Xvar, lisa)` and `parent(Who, lisa)` succeeds and returns $Xvar=Who$
 - Unification of `parent(marge, lisa)` and `parent(bart, lisa)` fails
 - Unification of `parent(marge, lisa)` and `child(lisa, marge)` fails
 - Unification of `a(X, X)` and `a(2, 3)` fails

- It is a basic building block of Prolog

- Unification is performed using this operator: $=$
Exercises

- Can $a(B, C)$ and $a(2, 3)$ be unified?
Exercises

- Can $a(B,C)$ and $a(2,3)$ be unified?
- $a(X,Y,L)=a(Y,2,\text{carole})$?
Exercises

- Can $a(B,C)$ and $a(2,3)$ be unified?
- $a(X,Y,L) = a(Y,2,\text{carole})$?
- $a(X,X,Y) = a(Y,u,v)$?
Exercises

- Can \(a(B,C) \) and \(a(2,3) \) be unified?
- \(a(X,Y,L)=a(Y,2,\text{carole})? \)
- \(a(X,X,Y)=a(Y,u,v)? \)
- \(p(X,b(Z,a),X)=p(Y,Y,b(V,a))? \)
Arithmetic

- +, -, *, /, div, mod
- Usage: \(X \) is 6-2, results in \(X=4 \)
- This is a special case of unification; it is in fact a structure \(- (6, 2)\) that can be evaluated
Comparison

- `<`, `>`, `>=`, `=<`, `==`, `\=`
- The first 4 are most useful, and can be used on integers and strings
- `X = Y` succeeds if `X` unifies with `Y`
- `X \= Y` succeeds if `X` fails to unify with `Y` (i.e. `X = Y` fails)
- `X == Y` succeeds if `X` and `Y` are syntactically identical
- `X \== Y` succeeds if `X == Y` fails
- You can think of `succeed` and `fail` as `true` and `false`
Lists

- \([a, b, c, d]\)
- \([\text{bart simpson}, \text{homer}, Z, \text{pred}(A,Z)]\)
- \([\text{bart simpson}, \text{homer}, Z, \text{parent}(A,Z)]\) unifies with \([\text{Person}, \text{homer}, X, \text{parent}(\text{homer, marge})]\) with \text{Person=\text{bart simpson}, X=Z, Z=marge, A=homer}\)
- \([\text{bart simpson}, \text{homer}, \text{parent}(A,Z)]\) unifies with \([\text{H}\mid\text{T}]\) with \text{H=\text{bart simpson}, T=[\text{homer, parent}(A,Z)]}\)
- \([X,Y\mid\text{T}]\) unifies with \([\text{bart simpson}, \text{homer}, \text{parent}(A,Z)]\) with \text{X=\text{bart simpson}, Y=homer, T=[\text{parent}(A,Z)]}\)
- \([a,b,c]\) does not unify with \([b,c]\)

For two lists to unify, every single one of their elements must unify. Otherwise the whole unification fails.
Exercises

- **contains**(X,L) checks whether a list contains an element
- **list_length**(L,N) computes the length of a list
- **split**(List,Left,Right) splits a list into 2 equally-sized parts
- **extract**(X,List,Remainder) takes an element from a list
 - extract(a,[a,b,c],[b,c]) succeeds
 - extract(b,[a,b,c],[b,c]) fails
- **permutation**(L,X) permutes a list
- **attach**(L1,L2,L3) appends two lists
Some solutions

`list_length(L,N)` is true when the list `L` contains `N` elements

`list_length([],0).`
`list_length([_|T],N) :-
 list_length(T, N1),
 N is N1+1.`

Note that the following version failed:

`list_length([],0).`
`list_length([_|T],N) :-
 N1 is N-1,
 list_length(T, N1).`
Some solutions

`contains(X,L)` checks whether a list `L` contains an element `X`

```prolog
contains1(X,[Y]) :-
    X=Y.
contains1(X,[X|T]).
contains1(X,[H|T]) :-
    contains1(X,T).
```

A more ”Prology” version:

```prolog
contains2(X, [X|_]).
contains2(X, [_|T]) :-
    contains2(X, T).
```

The query `contains(a,[a,b,c])` should succeed, `contains(a,[b,c])` should fail, and `contains(X,[b,c])` should return `X=b; X=c`

Note that `contains1` and `contains2` behave slightly differently: compare all possible solutions enumerated by `contains(X,[b,c])`.
Some solutions

`extract(X, List, Remainder)` takes an element from a list: it succeeds if `Remainder` is obtained by removing `X` from `List`

`extract(a, [a, b, c], [b, c])` succeeds

`extract(b, [a, b, c], [b, c])` fails

Solution:

```
extract(X, [X|T], T).
extract(X, [H|T], [H|Remainder]) :-
    extract(X, T, Remainder).
```

Note that this can called in different ways:

```
extract(b, [a, b, c], L).
extract(b, L, [b, c]).
```

With `extract` it is possible to both insert and extract elements from a list. This property is known as *reversibility*.
More exercises

- Duplicate each element of a list
- Intertwine two lists
- Palindrome test
- Palindrome building
- Remove redundant elements
- Test prime numbers
- Find repeated patterns in a list
- Interlace an unspecified number of lists
- Generate lists containing the terms "A", "C", "T", "G" without identical consecutive terms
Ideas

- Declarativity - Reversibility
- Depth-first strategy
- Backtracking
- Recursivity
- Unification
Details

Next class.