Neuro-Symbolic Artificial Intelligence Chapter 8
 Neuro-Symbolic Programming

Nils Holzenberger

April 8, 2024

Outline

(1) End-to-end Differentiable Proving
(2) Probabilistic Soft Logic

Outline

(1) End-to-end Differentiable Proving

(2) Probabilistic Soft Logic

End-to-end Differentiable Proving

End-to-End Differentiable Proving

Tim Rocktäschel
University of Oxford
tim.rocktaschel@cs.ox.ac.uk

Sebastian Riedel
University College London \& Bloomsbury AI s.riedel@cs.ucl.ac.uk

The problem

Inconsistent KBs

country("Austria"). capitalOf("Austria", "Vienna"). city("Wien"). country("Switzerland"). neighbor("Schweiz", "Austria"). capital("Suisse", "Berne"). city("Bern"). neighboring_capitals(Cap1, Cap2) :capital(Ctr1, Cap1), capital(Ctr2, Cap2), neighbor(Ctr1, Ctr2), city(Cap1), city(Cap2), country(Ctr1), country(Ctr2). ?- neighboring_capitals("Switzerland", "Austria").

The solution

- Distinct symbols represent the same entities Österreich, Oesterreich, Austria, Autriche \rightarrow Austria
- Soft, parametric unification u_{θ} :
- anything can unify with anything, e.g. Österreich with Austria
- but every unification incurs a cost
- as we go through the SLD tree, we keep the proofs with highest scores
- In detail:
- Two variables $\mathrm{u}_{\theta}(\mathrm{X}, \mathrm{Y}) \rightarrow$ score of 1 and $\mathrm{X}=\mathrm{Y}$
- A variable and a constant $u_{\theta}(X, c) \rightarrow$ score of 1 and $X=c$
- Two constants $\mathrm{u}_{\theta}(\mathrm{a}, \mathrm{b}) \rightarrow$ score of $\exp \left(-\left\|\theta_{a}-\theta_{b}\right\|\right)$
- Every constant and every predicate a is represented by a high-dimensional, learnable vector θ_{a}
- The idea is that the vectors Österreich, Desterreich, Austria, Autriche will end up close together Rocktäschel \& Riedel, End-to-end Differentiable Proving, NIPS 2017

Extensions

- Started as a PhD thesis in 2017
- Has been extended for
- scalability (speed of inference + size of KB) ${ }^{1}$
- use directly on natural language ${ }^{2}$
- producing explanations ${ }^{3}$

[^0]
Outline

(1) End-to-end Differentiable Proving

(2) Probabilistic Soft Logic

The problem

- For some problems, we can leverage structure, e.g. social and biological networks
- For some problems, we can leverage large amounts of data, e.g. the Web
- Structured models don't scale very well, so how do we leverage both?

The solution

Hinge-Loss Markov Random Fields and Probabilistic Soft Logic

Stephen H. Bach
BACH@CS.STANFORD.EDU
Computer Science Department
Stanford University
Stanford, CA 94305, USA
Matthias Broecheler
MATTHIAS@DATASTAX.COM
DataStax
Bert Huang
BHUANG@VT.EDU
Computer Science Department
Virginia Tech
Blacksburg, VA 24061, USA
\section*{Lise Getoor}
Computer Science Department
University of California, Santa Cruz
Santa Cruz, CA 95064, USA
Editor: Luc De Raedt

The solution

- Rewrite Prolog-like rules into CNF, interpret them as objective functions
- Relax the resulting SAT problem using soft logic
- Use convex optimization to find the truth values (in $[0,1]$) for each grounded formula

Example

Knowledge base:
$a(X)<-b(X)$.
a(c1).
b(c2).
Groundings + truth values:

$$
\begin{array}{ll}
\mathrm{a}(\mathrm{c} 1) & x_{1}=1 \\
\mathrm{a}(\mathrm{c} 2) & x_{2} \in[0,1] \\
\mathrm{b}(\mathrm{c} 1) & x_{3} \in[0,1] \\
\mathrm{b}(\mathrm{c} 2) & x_{4}=1
\end{array}
$$

Turning the rule into an objective:

- $a(c 1)<-b(c 1)$
- $a(c 1) \vee \neg b(c 1)$
- $\min \left\{1, x_{1}+\left(1-x_{3}\right)\right\}$ using Łukasiewicz logic

Full objective:
$\operatorname{argmax} \min \left\{1, x_{1}+\left(1-x_{3}\right)\right\}+\min \left\{1, x_{2}+\left(1-x_{4}\right)\right\}$ $x_{1}, x_{2}, x_{3}, x_{4}$

Actual objective: $\operatorname{argmax} \min \left\{1,2-x_{3}\right\}+\min \left\{1, x_{2}\right\}$
x_{2}, x_{3}
$\rightarrow x_{2}=1$ and the value of x_{3} can be anywhere between 0 and 1.

Extensions

The package is called Probabilistic Soft Logic (PSL)

- It is well documented
- Website ${ }^{4}$
- Talks and tutorials
- Wikipedia page
- It has been extended for scalability etc ${ }^{5}$

4https://psl.linqs.org/
${ }^{5}$ Magliacane et al, foxPSL: A Fast, Optimized and eXtended PSL implementation, Int. J. Approx. Reason. 2015

Extensions

It has been used in lots of applications

- Drug-drug interaction ${ }^{6}$
- Entity resolution ${ }^{7}$
- Recommender systems ${ }^{8}$
- Stance prediction in online debates ${ }^{9}$
- Knowledge graph inference ${ }^{10}$

[^1]
[^0]: ${ }^{1}$ Minervini et al, Towards Neural Theorem Proving at Scale, NAMPI@ICML 2018
 ${ }^{2}$ Weber et al, NLProlog: Reasoning with Weak Unification for Question Answering in Natural Language, ACL 2019
 Minervini et al, Differentiable Reasoning on Large Knowledge Bases and Natural Language, Knowledge Graphs for eXplainable Artificial Intelligence 2020
 ${ }^{3}$ Bianchi et al, Knowledge Graph Embeddings and Explainable AI, Knowledge Graphs for eXplainable Artificial Intelligence 2020

[^1]: ${ }^{6}$ Sridhar et al, A probabilistic approach for collective similarity-based drug-drug interaction prediction, Bioinform. 2016
 ${ }^{7}$ Bhattacharya \& Getoor, Collective entity resolution in relational data, ACM Trans. Knowl. Discov. Data 2007
 ${ }^{8}$ Kouki et al, HyPER: A Flexible and Extensible Probabilistic Framework for Hybrid Recommender Systems, RecSys 2015
 ${ }^{9}$ Sridhar et al, Joint Models of Disagreement and Stance in Online Debate, ACL 2015
 ${ }^{10}$ Pujara et al, Knowledge Graph Identification, ISWC 2013

