Neuro-Symbolic Artificial Intelligence
 Chapter 6 ProbLog

Nils Holzenberger

April 2, 2024

Outline

(1) Probabilistic programming

- Atoms
- Predicates
- Learning probabilities
(2) Probabilities
(3) ProbLog
- Mechanics
- Computing success probabilities
- Options

Outline

(1) Probabilistic programming

- Atoms
- Predicates
- Learning probabilities

(2) Probabilities

(3) ProbLog

- Mechanics
- Computing success probabilities
- Options

Problem

- Sometimes it's straightforward to determine the truth value of a predicate
- member (Element, List)
- win(GameState), loss(GameState)
- Sometimes not
- is_cat(Image)
- Sentiment analysis

$$
\begin{gathered}
\text { ?- Sentence="This is a great vacuum cleaner if } \\
\text { you're trying to ruin your carpet.", } \\
\text { sentiment(Sentence,Polarity). }
\end{gathered}
$$

Goal

- Incorporate uncertainty into Prolog
- Incorporate learnable parameters into Prolog
- Statistical machine learning
- Neural networks - see next lecture
- Combine symbols (Prolog program) and neural networks

ProbLog

ProbLog $=$ Prolog + probabilities
We introduce ProbLog which is - in a sense - the simplest probabilistic extension of Prolog one can design.

ProbLog

- ProbLog is one of many probabilistic programming packages
- As far as I know it is very principled, and enjoys many extensions
- Approximate and exact inference
- Plugins for Pytorch

Weather

Example weather.pl

- Run queries
- Assert evidence

Poker dice

- Fair dice
- Biased dice

Monty Hall paradox

- The Monty Hall game
- There are 3 doors. Behind one of them is a reward.
- The player picks a door.
- The game moderator opens a different door, revealing that there is no reward behind it.
- The player can choose to keep the door picked at the beginning, or to pick the other closed door.
- What is the best decision?
- Example monty-hall.pl
- First, code a door-picking game (1 turn)
- Second, code the Monty Hall game

Poker dice

Learning with ProbLog: problog lfi myprogram.pl myexamples.pl

- Learning the probability of an opponent cheating
- Learning the bias of the dice

Outline

(1) Probabilistic programming

- Atoms
- Predicates
- Learning probabilities
(2) Probabilities
(3) ProbLog
- Mechanics
- Computing success probabilities
- Options

Probabilities

- What is a probability?
- I toss a coin. What is the probability it lands on tails?
- I throw two dice. What is the probability of getting a double six?
- A belief

Measurement of my belief that the coin will land on tails

- The frequency of an outcome Frequency of outcome if I toss the same coin 10,000 times
- The ratio of monetary amounts people are willing to bet Predictive markets - possibly the most practical definition

Random variables

A random variable is a function that maps the outcome of an experiment to a value

Coin-flipping experiment:

$$
X=\left\{\begin{array}{ll}
X \text { "the coin lands on heads" } \rightarrow X=1, \\
& \text { "the coin lands on tails" } \rightarrow X=0
\end{array}\right\}
$$

Poker game:
$Y=\{\quad$ "my opponent cheated" $\rightarrow Y=1$, "my opponent did not cheat" $\rightarrow X=0 \quad\}$
$Z=\{" m y$ opponent is dealt a royal flush" $\rightarrow Z=1, \ldots\}$
We can reason about the probability of $X=1$, noted $p(X=1)$

Random variables

- Random variables are not random
- Random variables are not variables
- Random variables are functions
- Random variables are deterministic
- The randomness comes from the outcome
- A random variable deterministically maps an outcome to a value

Why use probabilities in AI?

- There is theory about how to estimate probabilities from data samples
- They can efficiently model noisy processes
- The process $=$ the part of the mechanics we understand
- The noise = the part we don't understand
- Probabilities can model deterministic processes

Useful properties

- Non-negativity $\forall x \in D, p(X=x) \geq 0 / \forall x \in D, f(x) \geq 0$
- Sums to $1 \sum_{x \in D} p(X=x)=1$
- Additivity If $A \subset B$ then $p(A) \leq p(B)$
- Joint probabilities $p(X=x, Y=y) \stackrel{\operatorname{def}}{=} p(\{X=x\} \cap\{Y=y\})$
- Marginalization $p(X=x)=\sum_{y \in D_{y}} p(X=x, Y=y)$
- Conditional probabilities $p(X=x \mid Y=y) \stackrel{\operatorname{def}}{=} \frac{p(X=x, Y=y)}{p(Y=y)}$

Example: probabilities in Natural Language Processing

Step 1. Express the quantities of interest as random variables.
eg spam classification:

Experiment $=I$ receive an email
$X=$ the email I receive (it's a string)
$Y=1$ if the email is spam, 0 otherwise

Example: probabilities in Natural Language Processing

$X=$ the email I receive (it's a string)
$Y=1$ if the email is spam, 0 otherwise
$p(y \mid x) \quad$ Given that I received email x, is it spam? $p(y) \quad$ How probable is it that an email I receive should be spam?
$p(x) \quad$ How probable is it that I should receive email x ?
$p(x \mid y)$ How probable is it that I should receive email x, assuming that it's spam/not spam?

Step 2. How to compute $\mathrm{p}(\mathrm{y} \mid \mathrm{x})$? \rightarrow next lecture

Outline

(1) Probabilistic programming

- Atoms
- Predicates
- Learning probabilities
(2) Probabilities
(3) ProbLog
- Mechanics
- Computing success probabilities
- Options

Probability distributions over Prolog programs

- Experiment:
- A ProbLog program is a set of Prolog clauses, each with a probability (weight in $[0,1]$)
- We draw clauses from a ProbLog program, according to the probabilities
- Outcome: a set of clauses S
- Random variable $X: X=1$ if $S \vdash G$ where G is a pre-defined query
- In Prolog we wanted to know whether or not G succeeds. In ProbLog, we get the probability that G succeeds - $p(X=1)$
- How do we compute $p(X=1)$? We enumerate all programs and their weights

De Raedt et al, ProbLog: A Probabilistic Prolog (...), IJCAI 2007

Probability distributions over Prolog programs

A Prolog program L is a set $\left\{f_{1}, \ldots, f_{m}\right\}$ where f_{i} is a Prolog clause
A ProbLog program T is a set of Prolog clauses $C=\left\{c_{1}, \ldots, c_{n}\right\}$ and a function w that specifies each clause's probability $w\left(c_{i}\right)$
G is a clause whose probability we want to compute

- $p(L \mid T)=\prod_{c \in L} w(c) \prod_{c \in C \backslash L} 1-w(c)$

Probability of program L drawn from T

- $p(G \mid L)=1$ if $L \vdash G$ else 0

Success probability of clause G given program L

- $p(G, L \mid T)=p(G \mid L) p(L \mid T)$

Probability of clause G and program L under T

- $p(G \mid T)=\sum_{L \subset C} p(G, L \mid T)$

Probability of clause G under T
\triangle We are abusing notation here
De Raedt et al, ProbLog: A Probabilistic Prolog (...), IJCAI 2007

Weather example

cloudy	sunshine	raining	nice	funny	$p(L)$
T	T	T	F	T	0
T	T	F	T	F	0
T	F	T	F	F	$.3 * .8=.24$
T	F	F	F	F	$.3 * .2=.06$
F	T	T	F	T	0
F	T	F	T	F	0.7
F	F	T	F	F	0
F	F	F	F	F	0

The sum is 1

Weather example

Probability of cloudy: . 3

cloudy	sunshine	raining	nice	funny	$p(L)$
T	T	T	F	T	0
T	T	F	T	F	0
T	F	T	F	F	$.3 * .8=.24$
T	F	F	F	F	$.3 * .2=.06$
F	T	T	F	T	0
F	T	F	T	F	0.7
F	F	T	F	F	0
F	F	F	F	F	0

Weather example

Probability of nice: . 7

cloudy	sunshine	raining	nice	funny	$p(L)$
T	T	T	F	T	0
T	T	F	T	F	0
T	F	T	F	F	$.3 * .8=.24$
T	F	F	F	F	$.3 * .2=.06$
F	T	T	F	T	0
F	T	F	T	F	0.7
F	F	T	F	F	0
F	F	F	F	F	0

Weather example

Probability of funny: 0

cloudy	sunshine	raining	nice	funny	$p(L)$
T	T	T	F	T	0
T	T	F	T	F	0
T	F	T	F	F	$.3 * .8=.24$
T	F	F	F	F	$.3 * .2=.06$
F	T	T	F	T	0
F	T	F	T	F	0.7
F	F	T	F	F	0
F	F	F	F	F	0

- This is referred to as model counting
- This has the same issues as using truth tables to determine tautologies

SLD tree

```
% If X is a friend of Y, then X likes Y:
l(X,Y):- f(X,Y).
% If there is Z such that X is friends with Z and Z likes Y,
% then there is a 80% chance that X likes Y
0.8::l(X,Y):- f(X,Z), l(Z,Y).
% john is friends with mary with probability . 5
0.5::f(john,mary).
0.5::f(mary,pedro).
0.5::f(mary,tom).
0.5::f(pedro,tom).
```


SLD tree

R1 $1(X, Y):-f(X, Y)$.

R2 0.8::l(X,Y):- f(X,Z), l(Z,Y).

R3 0.5::f(john,mary).

R4 0.5::f(mary,pedro).

R5 0.5::f(mary,tom).

R6 0.5::f(pedro,tom).

SLD tree

Query: I(john,tom)

SLD tree

In summary:

- Find all the ways of proving goal G
- Do this efficiently by using the trace of the proof by resolution
- $p(Q \mid T)=p\left(\underset{b \in \operatorname{proofs}(Q)}{\vee} \bigwedge_{c \in \operatorname{clauses}(b)} c\right)$ proofs (Q) : the set of proofs for Q clauses (b) : the set of clauses that appear in proof b
\rightarrow but the paths are not disjoint, so in general $p(q \mid T) \neq \sum_{b \in \operatorname{pr}(q)} \prod_{c \in c l(b)} p(c)$

De Raedt et al, ProbLog: A Probabilistic Prolog (...), IJCAI 2007

Grounding

$l(t, j)$ is grounded; $\quad l(t, X)$ is not grounded

- In some neuro-symbolic programming paradigms, the engine
- grounds all formulas, then
- computes the truth values of grounded atoms.
- The SLD tree only computes those groundings necessary for the proof
- In the previous example, $2 \times 4 \times 4=32$ groundings:

$l(j, j)$	$l(m, j)$	$l(p, j)$	$l(t, j)$	$f(j, j)$	$f(m, j)$	$f(p, j)$	$f(t, j)$
$l(j, m)$	$l(m, m)$	$l(p, m)$	$l(t, m)$	$f(j, m)$	$f(m, m)$	$f(p, m)$	$f(t, m)$
$l(j, p)$	$l(m, p)$	$l(p, p)$	$l(t, p)$	$f(j, p)$	$f(m, p)$	$f(p, p)$	$f(t, p)$
$l(j, t)$	$l(m, t)$	$l(p, t)$	$l(t, t)$	$f(j, t)$	$f(m, t)$	$f(p, t)$	$f(t, t)$

Binary Decision Diagrams

$Q=(R 1 \wedge R 2 \wedge R 3 \wedge R 5) \vee(R 1 \wedge R 2 \wedge R 3 \wedge R 4 \wedge R 6)$
Computing the probability of DNF formulae is an NP-hard problem even if all variables are independent

- Binary decision diagrams represent the formula as a disjunction of disjoint conjunctions
- There are algorithms for efficient conversion

Binary Decision Diagrams

$$
Q=(R 1 \wedge R 2 \wedge R 3 \wedge R 5) \vee(R 1 \wedge R 2 \wedge R 3 \wedge R 4 \wedge R 6)
$$

ROOT

Binary Decision Diagrams

$$
Q=(R 1 \wedge R 2 \wedge R 3 \wedge R 5) \vee(R 1 \wedge R 2 \wedge R 3 \wedge R 4 \wedge R 6)
$$

Binary Decision Diagrams

$Q=(R 1 \wedge R 2 \wedge R 3 \wedge R 5) \vee(R 1 \wedge R 2 \wedge R 3 \wedge R 4 \wedge R 6)$

- Read off the 3 paths that end in 1 :
- R2, R3, ᄀ R4, R5
- R2, R3, R4, ᄀ R6, R5
- R2, R3, R4, R6
$Q=(R 2 \wedge R 3 \wedge \neg R 4 \wedge R 5) \vee(R 2 \wedge R 3 \wedge R 4 \wedge \neg R 6 \wedge R 5) \vee(R 2 \wedge R 3 \wedge R 4 \wedge R 6)$
$p(Q)=p_{2} p_{3}\left(1-p_{4}\right) p_{5}+p_{2} p_{3} p_{4}\left(1-p_{6}\right) p_{5}+p_{2} p_{3} p_{4} p_{6}$
- Computing the BDD diagram:
- Turn each successful proof in the SLD tree into a clause
- Turn each clause into a BDD diagram
- Merge diagrams (P-time)
- Put diagram into canonical form (P-time)

Computing probabilities

- Use the Prolog engine to get all possible proofs
- Turn the SLD tree into a BDD diagram
- Read the probabilities off the BDD diagram

ProbLog options

- (default, no keyword): standard ProbLog inference
- sample: generate samples from a ProbLog program
- mpe: most probable explanation
- Ifi: learning from interpretations
- dt: decision-theoretic problog
- map: MAP inference
- explain: evaluate using mutually exclusive proofs
- ground: generate a ground program
- bn: export a Bayesian network
- shell: interactive shell

shell: interactive shell

problog shell
consult('file.pl')

shell: generate samples from a ProbLog program

 problog sample likes.pl -N 10 --with-facts
mpe: most probable explanation

computing the possible world with the highest probability in which all queries and evidence are true
problog mpe likes.pl --full

Ifi: learning from interpretations

next lecture

dt: decision-theoretic problog

File dt_model.pl:
0.3: :rain.
0.5::wind.
?::umbrella.
\$ problog dt dt_model.pl
raincoat: 0
umbrella: 1
SCORE: 43.00000000000001
?::raincoat.
broken_umbrella :- umbrella, rain, wind.
dry :- rain, raincoat.
dry :- rain, umbrella, not broken_umbrella.
dry :- not(rain).
utility(broken_umbrella, -40).
utility (raincoat, -20).
utility(umbrella, -2).
utility(dry, 60).

explain: evaluate using mutually exclusive proofs

 problog explain likes.pl
ground: generate a ground program

 problog ground likes.pl