Outline

1 Probabilistic programming
 - Atoms
 - Predicates
 - Learning probabilities

2 Probabilities

3 ProbLog
 - Mechanics
 - Computing success probabilities
 - Options
Outline

1. Probabilistic programming
- Atoms
- Predicates
- Learning probabilities

2. Probabilities

3. ProbLog
- Mechanics
 - Computing success probabilities
- Options
Problem

- Sometimes it’s straightforward to determine the truth value of a predicate
 - `member(Element,List)`
 - `win(GameState), loss(GameState)`

- Sometimes not
 - `is_cat(Image)`
 - Sentiment analysis

?- Sentence="This is a great vacuum cleaner if you're trying to ruin your carpet.", sentiment(Sentence,Polarity).
Goal

- Incorporate uncertainty into Prolog
- Incorporate learnable parameters into Prolog
 - Statistical machine learning
 - Neural networks — see next lecture
- Combine symbols (Prolog program) and neural networks
ProbLog

ProbLog = Prolog + probabilities

We introduce ProbLog which is — in a sense — the simplest probabilistic extension of Prolog one can design.

De Raedt et al, ProbLog: A Probabilistic Prolog and Its Application in Link Discovery, IJCAI 2007
ProbLog is one of many probabilistic programming packages.

As far as I know it is very principled, and enjoys many extensions:
- Approximate and exact inference
- Plugins for Pytorch
Weather

Example `weather.pl`

- Run queries
- Assert evidence
Poker dice

- Fair dice
- Biased dice
The Monty Hall game
- There are 3 doors. Behind one of them is a reward.
- The player picks a door.
- The game moderator opens a different door, revealing that there is no reward behind it.
- The player can choose to keep the door picked at the beginning, or to pick the other closed door.
- What is the best decision?

Example `monty-hall.pl`
- First, code a door-picking game (1 turn)
- Second, code the Monty Hall game
Learning with ProbLog: problog lfi myprogram.pl myexamples.pl

- Learning the probability of an opponent cheating
- Learning the bias of the dice
Outline

1 Probabilistic programming
 - Atoms
 - Predicates
 - Learning probabilities

2 Probabilities

3 ProbLog
 - Mechanics
 - Computing success probabilities
 - Options
What is a probability?
- I toss a coin. What is the probability it lands on tails?
- I throw two dice. What is the probability of getting a double six?

A belief
Measurement of my belief that the coin will land on tails

The frequency of an outcome
Frequency of outcome if I toss the same coin 10,000 times

The ratio of monetary amounts people are willing to bet
Predictive markets — possibly the most practical definition
A random variable is a function that maps the outcome of an experiment to a value.

Coin-flipping experiment:
\[X = \{ \text{"the coin lands on heads"} \rightarrow X = 1, \]
\[\quad \text{"the coin lands on tails"} \rightarrow X = 0 \} \]

Poker game:
\[Y = \{ \text{"my opponent cheated"} \rightarrow Y = 1, \]
\[\quad \text{"my opponent did not cheat"} \rightarrow X = 0 \} \]

\[Z = \{ \text{"my opponent is dealt a royal flush"} \rightarrow Z = 1, ... \} \]

We can reason about the probability of \(X = 1 \), noted \(p(X = 1) \).
Random variables

- Random variables are not random
- Random variables are not variables
- Random variables are functions
- Random variables are deterministic
- The randomness comes from the outcome
- A random variable deterministically maps an outcome to a value

Adapted from Ryan Cotterell’s Introduction to NLP
Why use probabilities in AI?

- There is theory about how to estimate probabilities from data samples
- They can efficiently model noisy processes
 - The process = the part of the mechanics we understand
 - The noise = the part we don’t understand
- Probabilities can model deterministic processes
Useful properties

- **Non-negativity** \(\forall x \in D, \ p(X = x) \geq 0 / \forall x \in D, \ f(x) \geq 0 \)
- **Sums to 1** \[\sum_{x \in D} p(X = x) = 1 \]
- **Additivity** If \(A \subset B \) then \(p(A) \leq p(B) \)
- **Joint probabilities** \(p(X = x, Y = y) \stackrel{\text{def}}{=} p(\{X = x\} \cap \{Y = y\}) \)
- **Marginalization** \(p(X = x) = \sum_{y \in D_y} p(X = x, Y = y) \)
- **Conditional probabilities** \(p(X = x|Y = y) \stackrel{\text{def}}{=} \frac{p(X=x,Y=y)}{p(Y=y)} \)
Example: probabilities in Natural Language Processing

Step 1. Express the quantities of interest as random variables.

eg spam classification:

Experiment = I receive an email

$X = \text{the email I receive (it's a string)}$

$Y = 1 \text{ if the email is spam, 0 otherwise}$
Example: probabilities in Natural Language Processing

\(X = \) the email I receive (it’s a string)

\(Y = 1 \) if the email is spam, 0 otherwise

\[p(y|x) \] Given that I received email \(x \), is it spam?
\[p(y) \] How probable is it that an email I receive should be spam?
\[p(x) \] How probable is it that I should receive email \(x \)?
\[p(x|y) \] How probable is it that I should receive email \(x \), assuming that it’s spam/not spam?

Step 2. How to compute \(p(y|x) \)? → next lecture
Outline

1 Probabilistic programming
 - Atoms
 - Predicates
 - Learning probabilities

2 Probabilities

3 ProbLog
 - Mechanics
 - Computing success probabilities
 - Options
Probability distributions over Prolog programs

- **Experiment:**
 - A ProbLog program is a set of Prolog clauses, each with a probability (weight in $[0,1]$)
 - We draw clauses from a ProbLog program, according to the probabilities

- **Outcome:** a set of clauses S

- **Random variable X:** $X = 1$ if $S \vdash G$ where G is a pre-defined query

- **In Prolog we wanted to know whether or not G succeeds. In ProbLog, we get the probability that G succeeds — $p(X = 1)$**

- **How do we compute $p(X = 1)$?** We enumerate all programs and their weights

De Raedt et al, *ProbLog: A Probabilistic Prolog (...), IJCAI 2007*
Probability distributions over Prolog programs

A Prolog program \(L \) is a set \(\{f_1, \ldots, f_m\} \) where \(f_i \) is a Prolog clause.

A ProbLog program \(T \) is a set of Prolog clauses \(C = \{c_1, \ldots, c_n\} \) and a function \(w \) that specifies each clause’s probability \(w(c_i) \).

\(G \) is a clause whose probability we want to compute.

- \(p(L|T) = \prod_{c \in L} w(c) \prod_{c \in C \setminus L} 1 - w(c) \)
 - Probability of program \(L \) drawn from \(T \)
- \(p(G|L) = 1 \) if \(L \vdash G \) else 0
 - Success probability of clause \(G \) given program \(L \)
- \(p(G, L|T) = p(G|L)p(L|T) \)
 - Probability of clause \(G \) and program \(L \) under \(T \)
- \(p(G|T) = \sum_{L \subseteq C} p(G, L|T) \)
 - Probability of clause \(G \) under \(T \)

⚠️ We are abusing notation here

Weather example

<table>
<thead>
<tr>
<th>cloudy</th>
<th>sunshine</th>
<th>raining</th>
<th>nice</th>
<th>funny</th>
<th>(p(L))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>(.3 \times .8 = .24)</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>(.3 \times .2 = .06)</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>0.7</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>0</td>
</tr>
</tbody>
</table>

The sum is 1
Weather example

Probability of **cloudy**: .3

<table>
<thead>
<tr>
<th>cloudy</th>
<th>sunshine</th>
<th>raining</th>
<th>nice</th>
<th>funny</th>
<th>(p(L))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>(0.3 \times 0.8 = 0.24)</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>(0.3 \times 0.2 = 0.06)</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>0.7</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>0</td>
</tr>
</tbody>
</table>
Weather example

Probability of **nice**: .7

<table>
<thead>
<tr>
<th>cloudy</th>
<th>sunshine</th>
<th>raining</th>
<th>nice</th>
<th>funny</th>
<th>$p(L)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>0.3 * 0.8 = 0.24</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>0.3 * 0.2 = 0.06</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>0.7</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>0</td>
</tr>
</tbody>
</table>
Weather example

Probability of funny: 0

<table>
<thead>
<tr>
<th>cloudy</th>
<th>sunshine</th>
<th>raining</th>
<th>nice</th>
<th>funny</th>
<th>$p(L)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>$0.3 \times 0.8 = 0.24$</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>$0.3 \times 0.2 = 0.06$</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>0.7</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>0</td>
</tr>
</tbody>
</table>

- This is referred to as *model counting*
- This has the same issues as using truth tables to determine tautologies
% If X is a friend of Y, then X likes Y:
\(l(X,Y) : - f(X,Y). \)

% If there is Z such that X is friends with Z and Z likes Y, % then there is a 80% chance that X likes Y
\(0.8::l(X,Y) : - f(X,Z), l(Z,Y). \)

% john is friends with mary with probability .5
\(0.5::f(john,mary). \)

\(0.5::f(mary,pedro). \)

\(0.5::f(mary,tom). \)

\(0.5::f(pedro,tom). \)
SLD tree

R1 \(l(X,Y) :- f(X,Y). \)

R2 \(0.8:: l(X,Y) :- f(X,Z), l(Z,Y). \)

R3 \(0.5:: f(john,mary). \)

R4 \(0.5:: f(mary,pedro). \)

R5 \(0.5:: f(mary,tom). \)

R6 \(0.5:: f(pedro,tom). \)
SLD tree

Query: `l(john, tom)`

```
R1  l(X, Y):- f(X, Y).
R2  0.8::l(X, Y):- f(X, Z), l(Z, Y).
R3  0.5::f(john, mary).
R4  0.5::f(mary, pedro).
R5  0.5::f(mary, tom).
R6  0.5::f(pedro, tom).
```

```
Q = (R2 ∧ R3 ∧ R1 ∧ R5) ∨ (R2 ∧ R3 ∧ R2 ∧ R4 ∧ R1 ∧ R6)
Q = (R1 ∧ R2 ∧ R3 ∧ R5) ∨ (R1 ∧ R2 ∧ R3 ∧ R4 ∧ R6)
```

In summary:

- Find all the ways of proving goal G
- Do this efficiently by using the trace of the proof by resolution

$$p(Q|T) = p(\bigvee_{b \in \text{proofs}(Q)} \bigwedge_{c \in \text{clauses}(b)} c)$$

- $\text{proofs}(Q)$: the set of proofs for Q
- $\text{clauses}(b)$: the set of clauses that appear in proof b

\implies but the paths are not disjoint, so in general $p(q|T) \neq \sum_{b \in \text{pr}(q)} \prod_{c \in \text{cl}(b)} p(c)$
Grounding

\(l(t, j) \) is *grounded*; \(l(t, x) \) is *not grounded*

- In some neuro-symbolic programming paradigms, the engine
 - grounds all formulas, then
 - computes the truth values of grounded atoms.
- The SLD tree only computes those groundings necessary for the proof
- In the previous example, \(2 \times 4 \times 4 = 32 \) groundings:
Binary Decision Diagrams

\[Q = (R_1 \land R_2 \land R_3 \land R_5) \lor (R_1 \land R_2 \land R_3 \land R_4 \land R_6) \]

Computing the probability of DNF formulae is an NP-hard problem even if all variables are independent

- Binary decision diagrams represent the formula as a disjunction of disjoint conjunctions
- There are algorithms for efficient conversion
Binary Decision Diagrams

\[Q = (R_1 \land R_2 \land R_3 \land R_5) \lor (R_1 \land R_2 \land R_3 \land R_4 \land R_6) \]
Binary Decision Diagrams

\[Q = (R1 \land R2 \land R3 \land R5) \lor (R1 \land R2 \land R3 \land R4 \land R6) \]
Binary Decision Diagrams

\[Q = (R1 \land R2 \land R3 \land R5) \lor (R1 \land R2 \land R3 \land R4 \land R6) \]

Read off the 3 paths that end in 1:
- R2, R3, \(\neg \) R4, R5
- R2, R3, R4, \(\neg \) R6, R5
- R2, R3, R4, R6

\[Q = (R2 \land R3 \land \neg R4 \land R5) \lor (R2 \land R3 \land R4 \land \neg R6 \land R5) \lor (R2 \land R3 \land R4 \land R6) \]

\[p(Q) = p_2p_3(1 - p_4)p_5 + p_2p_3p_4(1 - p_6)p_5 + p_2p_3p_4p_6 \]

Computing the BDD diagram:
- Turn each successful proof in the SLD tree into a clause
- Turn each clause into a BDD diagram
- Merge diagrams (P-time)
- Put diagram into canonical form (P-time)

Computing probabilities

- Use the Prolog engine to get all possible proofs
- Turn the SLD tree into a BDD diagram
- Read the probabilities off the BDD diagram
ProbLog options

- (default, no keyword): standard ProbLog inference
- sample: generate samples from a ProbLog program
- mpe: most probable explanation
- lfi: learning from interpretations
- dt: decision-theoretic problog
- map: MAP inference
- explain: evaluate using mutually exclusive proofs
- ground: generate a ground program
- bn: export a Bayesian network
- shell: interactive shell

shell: interactive shell

problog shell

consult('file.pl')
shell: generate samples from a ProbLog program

```
problog sample likes.pl -N 10 --with-facts
```
mpe: most probable explanation

computing the possible world with the highest probability in which all queries and evidence are true

problog mpe likes.pl --full
lfi: learning from interpretations

next lecture
dt: decision-theoretic problog

File dt_model.pl:

0.3::rain.
0.5::wind.
?:umbrella.
?:raincoat.

broken_umbrella :- umbrella, rain, wind.
dry :- rain, raincoat.
dry :- rain, umbrella, not broken_umbrella.
dry :- not(rain).

utility(broken_umbrella, -40).
utility(raincoat, -20).
utility(umbrella, -2).
utility(dry, 60).

$ problog dt dt_model.pl
raincoat: 0
umbrella: 1
SCORE: 43.00000000000001
explain: evaluate using mutually exclusive proofs

problog explain likes.pl
ground: generate a ground program

problog ground likes.pl