Neuro-Symbolic Artificial Intelligence Chapter 5 Symbolic Machine Learning

Nils Holzenberger

March 19, 2024

Nils Holzenberger

NeurSym-AI — Symbolic ML

March 19, 2024

Some statistics:

- You are (more than) halfway through this class
- There are 3 lab sessions left and 1 exam (no documents, no switched-on devices)
- I have posted 3 past exams with solutions

- Some more logic
 - Quantifiers
 - Previous lab session
 - Proof by resolution
 - Quantifiers and implications

2 Symbolic vs statistical machine learning

- Knowledge
- Explanations
- Anomalies
- Mechanics
- Symbolic machine learning
 - Reinforcement learning
 - Analogies
 - Inductive logic programming
 - Machine learning as compression

Some more logic

- Quantifiers
- Previous lab session
- Proof by resolution
- Quantifiers and implications

2 Symbolic vs statistical machine learning

Symbolic machine learning

Some more logic

Quantifiers

- Previous lab session
- Proof by resolution
- Quantifiers and implications

2 Symbolic vs statistical machine learning

Symbolic machine learning

Quantifiers in natural language

▲ This is a joke about quantifiers

In this country a woman gives birth every fifteen minutes. Our job is to find that woman and stop her.

— Groucho Marx

Some more logic

- Quantifiers
- Previous lab session
- Proof by resolution
- Quantifiers and implications
- 2 Symbolic vs statistical machine learning
- Symbolic machine learning

Previous lab session

Error in question "Resolution with a trap"

The implication was in the wrong direction in the question

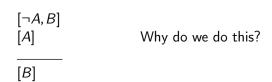
Thank you for telling me this

This question will not be graded

Some more logic

- Quantifiers
- Previous lab session
- Proof by resolution
- Quantifiers and implications
- 2 Symbolic vs statistical machine learning
- Symbolic machine learning

Proof by resolution



Proof by resolution

Goal: prove that $((\neg A \lor B) \land A)$ is a tautology

- \rightarrow show that $\neg((\neg A \lor B) \land A)$ is not satisfiable
- \rightarrow show that whatever valuation I pick, $v(\neg((\neg A \lor B) \land A)) =$ False

 $[\neg((\neg A \lor B) \land A)]$

(1) $[\neg A, B]$ (2) [A]

. . .

11/57

Proof by resolution

Goal: show that whatever valuation I pick, $v(\neg((\neg A \lor B) \land A)) =$ False

Let v be a valuation.

- If v(A) = True, v((1)) = v(B) and v((2)) = True, so the valuation of the whole thing is v(B).
- If v(A) = False, v((1)) = True and v((2)) = False so the valuation of the whole thing is False.
- \rightarrow I only need to consider v(B)

Exercise: why can I merge [A, X, B] and $[C, \neg X, D]$ to [A, B, C, D]?

Some more logic

- Quantifiers
- Previous lab session
- Proof by resolution
- Quantifiers and implications

2 Symbolic vs statistical machine learning

Symbolic machine learning

Why
$$(((\forall x)A) \supset B) \equiv (\exists x)(A \supset B)$$

and not $(((\forall x)A) \supset B) \equiv (\forall x)(A \supset B)$?

Proof using equivalence with \wedge and \vee

$$(((\forall x)A) \supset B) \equiv ((\neg((\forall x)A)) \lor B)$$
$$\equiv (((\exists x)(\neg A)) \lor B)$$
$$\equiv (\exists x)(\neg A \lor B)$$
$$\equiv (\exists x)(A \supset B)$$

Why $(((\forall x)A) \supset B) \equiv (\exists x)(A \supset B)$ and not $(((\forall x)A) \supset B) \equiv (\forall x)(A \supset B)$?

Example where $(((\forall x)A) \supset B) \neq (\forall x)(A \supset B)$:

 $B = \perp$

Domain $D = \{0, 1\}$

Interpretation of A: $A^{I} = x == 0$

- Left side
 - $((\forall x)A)$ is False
 - $((\forall x)A) \supset B)$ is True
- Right side
 - For assignment x = 0, $A^{I} \supset B^{I}$ is False
 - $(\forall x)(A \supset B)$ is False

Why $(((\forall x)A) \supset B) \equiv (\exists x)(A \supset B)$ and not $(((\forall x)A) \supset B) \equiv (\forall x)(A \supset B)$?

Examples where $(((\forall x)A) \supset B) \equiv (\forall x)(A \supset B)$:

- If the domain *D* contains a single element, then ∀*x* and ∃*x* are the same.
- If x occurs neither in A nor in B, then ∀x and ∃x behave the same in that formula.

16 / 57

Some more logic

2 Symbolic vs statistical machine learning

- Knowledge
- Explanations
- Anomalies
- Mechanics

Symbolic vs statistical machine learning

- Symbolic machine learning: define syntax over symbols to prove theorems
- Statistical machine learning: define random variables and parameterize the probabilities

Some more logic

2

Symbolic vs statistical machine learning

- Knowledge
- Explanations
- Anomalies
- Mechanics

19 / 57

Background knowledge

- In symbolic ML: background knowledge can be added easily
 - Add a rule
 - Add an entire knowledge base
 - Tweak one parameter
- In statistical ML: background knowledge is acquired as part of the target task

Auditability

- What does ChatGPT know?
- Symbolic models can be *audited*
- Statistical models, not so much

Editability

- The knowledge in symbolic models can be edited (insert, delete, replace)
- In statistical ML it's possible (see Lake et al) but takes many repetitions
 - Acquiring a new word for a language model is estimated to take ~10k occurrences of the word
 - There are ways to construct one-shot learning, e.g. Lake et al, One shot learning of simple visual concepts, CogSci 2011

One-shot learning of unknown object

Generalization

- The point of machine learning is to build a model using training data, and then to use it on new data
- A model that works well on new data has good generalization
- Historically, statistical ML has generalized better than symbolic ML •
- Statistical systems also learn structure: While deep networks are capable of memorizing noise data, our results suggest that they tend to prioritize learning simple patterns first.¹

¹Arpit et al, A Closer Look at Memorization in Deep Networks, ICML 2017

Some more logic

2 Symbolic vs statistical machine learning

- Knowledge
- Explanations
- Anomalies
- Mechanics

Criteria for explanations

Relevance

- Adapted to the level of expertise of the user
- Specific: just highlighting the part of the input that led to the decision is not specific enough
- Faithfulness: Is the reason provided the actual reason that was used to get to the output?

Symbolic ML

- Typically, a model is its own explanation
- The rules define how the input is mapped to the output (→ faithfulness)
- Rules can be translated to match the desired level of expertise and specificity (→ relevance)
- Generally this translation is a challenge

Statistical ML

Yes, when you add two odd numbers together, the result is always an odd number. This is because any odd number can be expressed as 2n+1, where n is an integer. When you add two numbers in this form, the result is (2n+1)+(2m+1) = 2(n+m) + 2, which is also in the form 2p+1, where p is an integer. This means that the result is an odd number. — ChatGPT, early 2023

- Numerical computations need to be translated to relevant and faithful explanations
- Post-hoc models of explanability have no guarantee of being faithful

Anomalies

Outline

Some more logic

2 Symbolic vs statistical machine learning

- Knowledge
- Explanations
- Anomalies
- Mechanics

Al-generated images

Which image is Al-generated?

\rightarrow there are anomalies

https://hyperallergic.com/808778/ai-image-generators-finally-figured-out-hands/

Nils Holzenberger

Anomalies

Homer Simpson's brain

An AI image recognition software would not understand the anomaly because

- a brain with a crayon in it looks almost like a brain and
- it has never seen crayons in brains

Contradiction

- Symbolic ML is sensitive to it
- Statistical ML is not

Some more logic

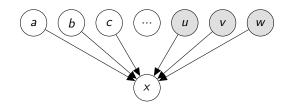
2 Symbolic vs statistical machine learning

- Knowledge
- Explanations
- Anomalies
- Mechanics

Symbolic machine learning

Mechanics

Randomness



- Many factors cause x, but we only know some of them, so it *appears* that the behavior is random
- Saying that x is random is like saying "I don't know the mechanisms that govern the behavior of x"
- The best thing would be to find out the mechanism; the next best thing is to model the probability
- Imagine modeling the trajectory of the Earth around the sun by interpolating the curve with a polynomial

Nils Holzenberger

NeurSym-AI — Symbolic ML

Independently controllable features

Independently Controllable Factors

 $\begin{array}{ccc} & \text{Valentin Thomas}^{\,*\,1\,2} & \text{Jules Pondard}^{\,*\,1\,2\,3} & \text{Emmanuel Bengio}^{\,*\,4} \\ & \text{Marc Sarfati}^{1\,5} & \text{Philippe Beaudoin}^2 & \text{Marie-Jean Meurs}^6 & \text{Joelle Pineau}^4 \\ & \text{Doina Precup}^4 & \text{Yoshua Bengio}^{1\,7} \end{array}$

August 29, 2017

Models

Symbolic and statistical systems are models of reality, not reality itself
All models are wrong, some of them are useful — George E. P. Box

Some more logic

Symbolic vs statistical machine learning

Symbolic machine learning

- Reinforcement learning
- Analogies
- Inductive logic programming
- Machine learning as compression

Symbolic vs statistical machine learning

- This lecture is mostly about symbolic machine learning
- The next lectures will be about statistical machine learning

Some more logic

Symbolic vs statistical machine learning

Symbolic machine learning Reinforcement learning

- Analogies
- Inductive logic programming
- Machine learning as compression

Noughts and Crosses/Tic-Tac-Toe

Matchbox Educable Noughts and Crosses Engine

https://en.wikipedia.org/wiki/Matchbox_Educable_Noughts_and_Crosses_Engine

Nils Holzenberger

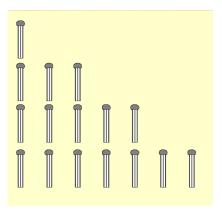
NeurSym-AI — Symbolic ML

March 19, 2024

Matchbox Educable Noughts and Crosses Engine

- Donald Michie, 1961
- 304 matchboxes, one for each state of the game (up to rotation and symmetry)
- Beads of 9 different colors (one for each possible move)
- To decide which move to make:
 - Go to the matchbox corresponding to the game state
 - Draw a bead from it, and take that move
- If the game was won, return the beads to their original box, and add 3 more beads of that color
- If the game was lost, don't return the beads to their original box
- If the game was a draw, **return the beads** and **1 more** to their original box

Nim



- Players take turns removing matches
- Each player can remove as many matches as they like (at least 1), as long as they all come from the same row
- The last player to remove a match loses

Symbolic machine learning 3

Reinforcement learning

Analogies

- Inductive logic programming
- Machine learning as compression

Analogies

ghi	\rightarrow	ghj
uuvvww	\rightarrow	uuvvxx
		uuvvjj
		uuvvwx
		ghj
		uuwvwx
		uuvvj
		uuvvww
		uuvvwj
		error

Analogies

Analogies

- On-the-fly learning of rules
- Many tasks are a form of analogy • solve \rightarrow solves, get \rightarrow ?

• rosa \rightarrow rosam, vita \rightarrow ?

• orang \rightarrow orang-orang, burung \rightarrow ?

- conjugation in English² declension in Latin plural in Indonesian
- Analogies are highly discrete, but may be approximated by continuous representations, e.g. word embeddings³

²Murena et al. Solving Analogies on Words based on Minimal Complexity Transformation. IJCAI 2020

³Mikolov et al, Distributed Representations of Words and Phrases and their Compositionality, NIPS 2013; Chen et al, Evaluating vector-space models of analogy, CogSci 2017

Some more logic

Symbolic vs statistical machine learning

Symbolic machine learning

- Reinforcement learning
- Analogies
- Inductive logic programming
- Machine learning as compression

Deduction vs induction

Deduction: rules \rightarrow conclusions (Prolog)

Induction: conclusions \rightarrow rules (Progol, Stephen Muggleton, 1995)

Learning rules

```
cute(X) :- dog(X), small(X), fluffy(X). (1)
cute(X) :- cat(X), fluffy(X). (2)
```

Least-general generalization of (1) and (2): cute(X) :- fluffy(X).

pet(X) := dog(X).	(3)
<pre>pet(X) :- cat(X).</pre>	(4)
<pre>small(X) :- cat(X).</pre>	(5)
tame(X) := pet(X).	(6)

Least-general generalization of (1)-(6): cute(X) :- pet(X), small(X), fluffy(X).

Inverse resolution

Nils Holzenberger

Association Rule Mining

Data-driven version of inverse resolution

- The data *D* is a set of *transactions* e.g. Transaction = list of items someone bought in a shop
- Every transaction has a set of binary attributes
 e.g. Attribute i = whether person bought item #i
- An *itemset* is a subset of a transaction
- Support of itemset X is number of occurrences in D support(X) = |{t|t ∈ D, X ⊆ t}|
- Confidence in rule $X \to Y$ is $\frac{\text{support}(X \cap Y)}{\text{support}(X)}$

 $\underline{\wedge}$ This is based on co-occurrence in data, while inverse resolution is based on existing rules.

Agrawal et al, Mining association rules between sets of items in large databases, SIGMOD 1993; Belyy and Van Durme, Script Induction as Association Rule Mining, NUSE@ACL 2020

Nils Holzenberger

NeurSym-AI — Symbolic ML

Some more logic

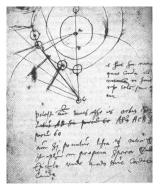
Symbolic vs statistical machine learning

Symbolic machine learning

- Reinforcement learning
- Analogies
- Inductive logic programming
- Machine learning as compression

Tycho Brahe

Tycho Brahe 1546 - 1601



https://en.wikipedia.org/ wiki/Tycho_Brahe

52 / 57

Johannes Kepler

Johannes Kepler 1571 - 1630

- The orbit of every planet is an ellipse with the sun at one of the two foci.
- A line joining a planet and the Sun sweeps out equal areas during equal intervals of time.
- The ratio of the square of an object's orbital period with the cube of the semi-major axis of its orbit is the same for all objects orbiting the same primary.
 T²/₃ = constant

https://en.wikipedia.org/wiki/Johannes_Kepler

Nils Holzenberger

NeurSym-AI — Symbolic ML

Isaac Newton

Isaac Newton 1643 - 1727

 A body remains at rest, or in motion at a constant speed in a straight line, except insofar as it is acted upon by a force.

2
$$\frac{d\vec{p}}{dt} = \sum_i \vec{F}_i$$

3 $\vec{F}_{A \to B} = -\vec{F}_{B \to A}$ and $\vec{F}_{A \to B} \cdot \vec{AB} = 0$

https://en.wikipedia.org/wiki/Isaac_Newton

Compression

COMPRESSION

Reality

Observations

Empirical laws

 $\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \sum_i \vec{F}_i$

55 / 57

 $\frac{T^2}{a^3} = \text{constant}$

NeurSym-AI — Symbolic ML

ChatGPT as compression

ANNALS OF TECHNOLOGY

CHATGPT IS A BLURRY JPEG OF THE WEB

OpenAI's chatbot offers paraphrases, whereas Google offers quotes. Which do we prefer?

By Ted Chiang

February 9, 2023

Minimum description length

Which one is the best model?

- An equation with 8 parameters that explains 92% of observations
- A parametric function with 12M parameters trained on 1M samples that explains 96% of observations

The answer depends on:

- Your goal
 - Predict
 - Understand
- The cost of
 - Making inaccurate predictions
 - Computation
 - Training (a.k.a. Parameter estimation)
 - Inference
 - Collecting data samples

• ...

These criteria can be unified using *minimum description length* DL(data) = DL(model) + DL(data|model)