Logic, Knowledge Representation and Probabilities Propositional Logic

Nils Holzenberger

March 11, 2025

Nils Holzenberger

LKR — Propositional Logic

March 11, 2025

🗖 Logic,

- 🛛 Knowledge Representation and
- Probabilities

TODO

🗖 <mark>Logic</mark>,

- 🕱 Knowledge Representation and
- **\Box** Probabilities \leftarrow April 1 and 8

Outline

Logic

- 2 The language of logic
- 3 Automated theorem proving
 - Problem statement
 - Rewriting
 - In Prolog

Outline

- 2 The language of logic
- Automated theorem proving
 - Problem statement
 - Rewriting
 - In Prolog

What is logic good for?

- Represent logic and knowledge
- Represent argumentation
- Mechanize reasoning

What is logic good for?

- Computer science
- Automated theorem proving
- Proofs of programs
- Al and reasoning
 - Argumentation
 - High-level NLP
- Electronics
- Database management
- Knowledge representation & semantic Web

- Cognitive science
 - Human cognition
 - Proof automated proof
- Contradiction
 - Anomaly detection
 - Explanation (XAI)
- Relevance
 - No continuity
 - Reason vs guess
- Basic in many curriculums

History

 \triangle Logic, reasoning and argumentation are universal human abilities. In this lecture, *logic* is a formal system, which can be used to *model* human reasoning and argumentation.

- Ancient greeks
 - Stoics
 - Aristotle: syllogism and argumentation
- Medieval logic
 - William of Ockham (1288-1348)
 - de Morgan's laws
 - Ternary logic
- Traditional logic
 - Port Royal's logic
 - Antoine Arnauld & Pierre Nicole (1662)
 - Logic of propositions

- Modern Logic
 - Descartes, Leibniz
 - George Boole (1848)
 - Gottlob Frege: *Begriffschrift* (1879), quantification
 - Charles Peirce
 - Giuseppe Peano: logical axiomatization of arithmetics
 - Bertrand Russell & Alfred N. Whitehead (1925): logical axiomatization of mathematics

Logic

Overview

- The goal of automated theorem proving is to show things like S ⊨ X (S semantically entails X) where X is a theorem and S are a set of assumptions.
- We will see that this is equivalent to proving that $(\neg(S \cup \{\neg X\}))$ is a tautology. So our goal is to prove tautologies.
- Problem: we'll need to build gigantic truth tables to check all possible valuations.
- Solution: valuations map *syntax* to *semantics*. Instead, stay in the space of syntax. This means modifying the syntax of the formula without modifying its semantics, until computing the valuation becomes trivial.

Outline

Logic

Automated theorem proving

- Problem statement
- Rewriting
- In Prolog

Symbols

Logic is about syntax and semantics

Syntax: how to *manipulate* symbols

Semantics: what meaning the symbols have

The use of these words is specific to logic!

Syntax

- Alphabet
 - Propositional symbols: p in $a \lor p$
 - Constants: T and \perp
 - Connectors: \neg (1-place), \land (2-place), \lor (2-place)...
- Atomic formula: constants and connectors
- Propositional formula
 - Atomic formula
 - If F is a formula, then $(\neg F)$ is a formula
 - If is a connector, and A and B are formulas, then $(A \bullet B)$ is a formula

The sets of atomic formulas and propositional formulas are the smallest sets having these properties.

 $\underline{\land}$ None of those things above may be said to be "true" or "false". That pertains to the semantics.

Truth tables

А	В	A and B	A or B	A implies B
Т	Т	Т	Т	Т
Т	F	F	Т	F
F	Т	F	Т	Т
F	F	F	F	Т

Each of these lines is a *valuation* of the logical propositions. It's a mapping of the symbols to "true" or "false".

How many 2-place connectors can I invent?

6 of the 2-place connectors are trivial, which ones?

What about 3-place connectors?

Valuation

This is where *semantics* come into play. A *valuation* assigns "true" or "false" to propositional symbols and to propositional formulas. $v: F \rightarrow \{\text{True}, \text{False}\}$

A valuation v must be consistent:	Syntactic	Semantic
v(T) = True	7	Not
	Λ	And
$v(\perp) = False$	V	Or
	\supset	\Rightarrow
$v(\neg F) = \operatorname{Not} v(F)$	C	¢
	≡	\Leftrightarrow
$v((A \bullet B)) = v(A) \blacksquare v(B)$	1	Nand
	Ļ	Nor
Syntax and semantics look very similar, so	eq	≯
we use different symbols to avoid confusion.	¢	¢

Tautologies and satisfiability

A propositional formula X is a *tautology* if for any valuation v, v(X) = True

A tautology evaluates to True regarless of what its components evaluate to.

A set S of propositional formulas is *satisfiable* if some valuation v_0 maps every member of S to True: $\forall X \in S, v_0(X) = \text{True}$

SAT problem: given S, find v_0 .

X is a tautology iff $(\neg X)$ is not satisfiable.

Why do we need this? We will see later that proving a theorem is equivalent to proving a tautology. (Specifically, proving $S \vdash X$ is like proving that $(\neg(S \cup \{\neg X\}))$ is a tautology.)

Tautologies

- Show that X is a tautology iff $X \equiv T$ is a tautology
- Show that X is a tautology iff $T \supset X$ is a tautology
- Show that $(\neg(X \land Y)) \equiv (\neg X \lor \neg Y)$ is a tautology
- Show that $(\neg(X \lor Y)) \equiv (\neg X \land \neg Y)$ is a tautology
- Show that $(P \land (Q \lor R)) \equiv ((P \land Q) \lor (P \land R))$ is a tautology
- Show that $(P \lor (Q \land R)) \equiv ((P \lor Q) \land (P \lor R))$ is a tautology

X is a tautology iff $T \supset X$ is a tautology

Let's show that X is a tautology iff $T \supset X$ is a tautology.

First, notice that, for any valuation v: $v(T \supset X) = v(T) \Rightarrow v(X) = \text{True} \Rightarrow v(X)$ Using a truth table, you can show that $\text{True} \Rightarrow v(X)$ is equal to v(X). So for any valuation v: $v(T \supset X) = v(X)$.

Now let's show that if X is a tautology then $T \supset X$ is a tautology: Let v be a valuation. Then $v(T \supset X) = v(X) =$ True, the last equality being a consequence of X being a tautology.

Now let's show that if X is not a tautology then $T \supset X$ is not a tautology: X is not a tautology so there exists a valuation u such that u(X) = False. Consequently $u(T \supset X) = u(X) =$ False so $T \supset X$ is not a tautology.

Logical consequence

Logical consequence: $S \models X$ (read it as S semantically entails X)

If a valuation assigns True to all elements in S, then it will assign True to X.

 $\models X$ means that X is a tautology.

This is closer to our use of logic: we're only interested in the conclusions X that we can derive from assumptions S that we know to be true.

Logical consequence

- Show that if $S \models X$ then $S \cup \{\neg X\}$ is not satisfiable. *lab session*
- Show the reciprocal.
- *Ex falso quodlibet sequitur*: Let *S* be a set of formulas, and *A* a formula such that $A \in S$ and $(\neg A) \in S$. Show that $\forall X, S \models X$
- Conversely, if $\forall X, S \models X$, show that S is not satisfiable.
- Monotony: show that $S \models X$ implies $S \cup \{A\} \models X$ lab session
- Deduction: show that $S \cup \{X\} \models Y$ iff $S \models (X \supset Y)$ lab session

Outline

3 Automated theorem proving

- Problem statement
- Rewriting
- In Prolog

Problem

The goal of automated theorem proving is to show things like $S \models X$ where X is a theorem and S are a set of assumptions.

We saw that this is equivalent to proving that $(\neg(S \cup \{\neg X\}))$ is a tautology.

So our goal is to prove tautologies.

Problem: we'll need to build gigantic truth tables to check all possible valuations.

Solution: valuations map syntax to semantics. Instead, stay in the space of syntax. This means modifying the syntax of the formula without modifying its semantics, until computing the valuation becomes trivial.

Replacement procedure

Define a procedure P such that if $(X \equiv Y)$ is a tautology, then $P(X) \equiv P(Y)$ is a tautology.

This is a syntactic rewriting that preserves the property of being a tautology.

Rewriting

Normal form for negation

- A formula is in normal form for negation if the negation symbol \neg only occurs in front of symbols
 - $(\neg X \lor Y)$ is in normal form for negation
 - $(\neg(X \land Y))$ is not
- Use the following tautologies to rewrite negations:

•
$$(\neg(\neg X)) \equiv X$$

• $(\neg(X \lor Y)) \equiv ((\neg X) \land (\neg Y))$
• $(\neg(X \land Y)) \equiv ((\neg X) \lor (\neg Y))$

23 / 37

Generalized disjunction/conjunction

Define two new operators, that don't belong to the propositional language:

 $[X_1, X_2, ..., X_n]$ is the generalized disjunction of $X_1, X_2, ..., X_n$

For any valuation v, $v([X_1, X_2, ..., X_n]) = \text{False iff } \forall i \in [1, n], v(X_i) = \text{False}$

$$v([]) = False$$
 "X₁ or X₂ or ... or X_n"

 $\langle X_1, X_2, ..., X_n \rangle$ is the generalized conjunction of $X_1, X_2, ..., X_n$

For any valuation v, $v(\langle X_1, X_2, ..., X_n \rangle) = \text{True iff } \forall i \in [1, n], v(X_i) = \text{True}$

 $v(\langle \rangle) = \text{True}$ "X₁ and X₂ and ... and X_n"

Conjunctive normal form

Let F be a propositional formula. Its *conjunctive normal form* is a rewriting of F as

 $< C_1, C_2, ..., C_i, ..., C_n >$

where each C_i is of the form $[X_1, X_2, ..., X_{n_i}]$. C_i is a *clause*.

The disjunctive normal form is the same thing mutandem mutandis.

Conjunctive normal form

How do we get the conjunctive normal form? Use the following tautologies:

$$\land \land \land \land Y) \equiv \neg X \lor \neg Y$$

$$\neg (X \land Y) \equiv \neg X \lor \neg Y$$

$$\neg (X \lor Y) \equiv \neg X \land \neg Y$$

$$\neg (X \lor Y) \equiv \neg X \land \neg Y$$

$$\land \land \land Y \equiv \neg X \land \neg Y$$

$$\circ \neg X \downarrow Y \equiv \neg X \land \neg Y$$

$$\circ \neg X \downarrow Y \equiv X \land \neg Y$$

$$\circ \neg X \downarrow Y \equiv X \land \neg Y$$

$$\circ \neg X \downarrow Y \equiv X \land \neg Y$$

$$\circ \neg X \downarrow Y \equiv \neg X \land Y$$

$$\circ \neg X \not Y \equiv \neg X \land Y$$

$$\circ \neg X \not Y \equiv \neg X \land Y$$

$$\circ \neg X \not Y \equiv \neg X \land Y$$

$$\circ \neg X \not Y \equiv \neg X \land Y$$

$$\circ \neg X \not Y \equiv \neg X \land Y$$

Rewriting algorithm

Rewriting a disjunction:

Replace
$$< ...[...P...]... >$$
 with $< ...[...A, B...]... >$

Rewriting a conjunction:

Replace < ...[...P...]... > with < ...[...A...], [...B...]... >

Rewriting a negation:

Replace
$$< ... [... \neg (\neg P) ...] ... >$$
 with $< ... [... P ...] ... >$

Nils Holzenberger

LKR — Propositional Logic

Exercise

Conjunctive normal form of $((A \supset B) \supset (A \supset C))$ (knowing that $(X \supset Y) \equiv (\neg X \lor Y)$ and $(\neg (X \supset Y)) \equiv (X \land \neg Y)$)

•
$$< [((A \supset B) \supset (A \supset C))] >$$

• $< [\neg (A \supset B) \lor (A \supset C)] >$
• $< [\neg (A \supset B), (A \supset C)] >$
• $< [(A \land \neg B), (A \supset C)] >$
• $< [A, (A \supset C)], [\neg B, (A \supset C)] >$
• $< [A, (\neg A \lor C)], [\neg B, (A \supset C)] >$
• $< [A, \neg A, C], [\neg B, (A \supset C)] >$
• $< [A, \neg A, C], [\neg B, \neg A, C] >$

Note that the first clause will always evaluate to True. So we can rewrite the original formula as $< [\neg B, \neg A, C] >$ without changing its truth value. That's a purely *syntactic* rewriting.

Nils Holzenberger

LKR — Propositional Logic

Proof by resolution

- A sequence is a conjunction of lines
- Each line is a generalized disjunction (a clause)
- *Growth* of the sequence:
 - if a clause reads as $[...(\beta_1 \lor \beta_2)...]$, insert a new line: $[...\beta_1, \beta_2...]$
 - if a clause reads as [...($\alpha_1 \land \alpha_2$)...], insert two new lines: [... α_1 ...] and [... α_2 ...]
 - when adding new lines, replace $\neg \neg X$ by X, $\neg T$ by \bot and $\neg \bot$ by T
- Resolution: from lines [A, X, B] and $[C, \neg X, D]$ create the line [A, B, C, D], i.e. concatenate the lines leaving aside all occurrences of X and of $\neg X$
- a proof of X by resolution is a sequence starting with the [¬X] line (goal) and ending with an empty clause [].
- X is a tautology if and only if X has a proof by resolution.

Example

Prove
$$((A \supset B) \land (B \supset C)) \supset \neg (\neg C \land A)$$

(knowing that $(X \supset Y) \equiv (\neg X \lor Y)$ and $(\neg (X \supset Y)) \equiv (X \land \neg Y)$)

$$\begin{bmatrix} \neg (((A \supset B) \land (B \supset C)) \supset \neg (\neg C \land A)) \end{bmatrix} \qquad \begin{bmatrix} \neg A, B \end{bmatrix} \qquad \begin{bmatrix} \neg C \end{bmatrix}$$

$$\begin{bmatrix} \neg B, C \end{bmatrix} \qquad \begin{bmatrix} C \end{bmatrix}$$

$$\begin{bmatrix} (A \supset B) \land (B \supset C)) \end{bmatrix} \qquad \begin{bmatrix} \neg C \land A \end{bmatrix} \qquad \begin{bmatrix} \neg A, B \end{bmatrix}$$

$$\begin{bmatrix} \neg B, C \end{bmatrix} \qquad Done. We$$

$$didn't need a$$

$$truth table!$$

$$\begin{bmatrix} \neg A, B \end{bmatrix}$$

$$\begin{bmatrix} \neg A, B \end{bmatrix}$$

$$\begin{bmatrix} \neg B, C \end{bmatrix} \qquad Done. We$$

$$didn't need a$$

$$truth table!$$

LKR — Propositional Logic

In Prolog

Example in Prolog

A :- B turns into $[A, \neg B]$

- parent(marge, bart).
- parent(clancy, marge).
- grandparent(X,Y) :
 - parent(X,Z),
 - parent(Z,Y).
- ?- grandparent(clancy,bart)

[parent(marge, marge)] [parent(clancy, marge)]

 $[grandparent(X,Y), \neg parent(X,Z),$ \neg parent(Z,Y)]

 $[\neg grandparent(clancy, bart)]$

Outline

1 Logic

- 2 The language of logic
- Automated theorem proving
 - Problem statement
 - Rewriting
 - In Prolog

⊢ vs ⊨

Logical consequence: $S \models X$

If a valuation assigns True to all elements in S, then it will assign True to X.

 \models is a *semantic deduction*, typically involving truth tables.

 \vdash is a *syntactic deduction*, typically involving proof by resolution.

Theorem proving

• An axiomatic system is a proof system. For example the Hilbert system:

•
$$(X \supset (Y \supset X))$$

• $(X \supset (Y \supset Z)) \supset ((X \supset Y) \supset (X \supset Z))$
• $(\bot \supset X)$
• $(X \supset T)$
• $(\neg \neg X \supset X)$
• $(X \supset (\neg X \supset Y))$
• $((A \land B) \supset A)$
• $((A \land B) \supset A)$
• $((A \land B) \supset B)$
• $((A \land B) \supset B)$
• $((A \supset X) \supset ((B \supset X) \supset ((A \lor B) \supset X))))$
• inference rule (modus ponens) : $\frac{X \quad (X \supset Y)}{Y}$
This can be used to produce new theorems, through *forward chaining*

• In contrast, proof by resolution is backward chaining

۲

Soundness

Axiomatic systems define \vdash and \models . An axiomatic system is *sound* if:

Let F be a propositional formula and S a set of propositional formulas.

If there is a sequence that derives from $S \cup \{\neg F\}$ and that contains the empty clause, then $S \models F$.

In other words if $S \vdash F$ then $S \models F$.

Completeness

Axiomatic systems define \vdash and \models . An axiomatic system is *complete* if:

Let F be a propositional formula and S a set of propositional formulas.

If $S \models F$, then there is a sequence that derives from $S \cup \{\neg F\}$ and that contains the empty clause.

Completeness is the converse of soundness: if $S \models F$ then $S \vdash F$.

Gödel's PhD thesis

Resolution is sound and complete for first-order logic