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Logic

What is logic good for?

Represent logic and
knowledge
Represent argumentation
Mechanize reasoning
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Logic

What is logic good for?

Computer science
Automated theorem proving
Proofs of programs
AI and reasoning

Argumentation
High-level NLP

Electronics
Database management
Knowledge representation &
semantic Web

Cognitive science
Human cognition
Proof – automated proof

Contradiction
Anomaly detection
Explanation (XAI)

Relevance
No continuity
Reason vs guess

Basic in many curriculums
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Logic

History

" Logic, reasoning and argumentation are universal human abilities. In this lecture,
logic is a formal system, which can be used to model human reasoning and
argumentation.

Ancient greeks

Stoics
Aristotle: syllogism and
argumentation

Medieval logic

William of Ockham (1288-1348)
de Morgan’s laws
Ternary logic

Traditional logic

Port Royal’s logic
Antoine Arnauld & Pierre Nicole
(1662)
Logic of propositions

Modern Logic

Descartes, Leibniz
George Boole (1848)
Gottlob Frege:
Begriffschrift (1879),
quantification
Charles Peirce
Giuseppe Peano: logical
axiomatization of
arithmetics
Bertrand Russell & Alfred
N. Whitehead (1925):
logical axiomatization of
mathematics
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Logic

Overview

The goal of automated theorem proving is to show things like S |=X
(S semantically entails X ) where X is a theorem and S are a set of
assumptions.
We will see that this is equivalent to proving that (¬(S ∪ {¬X })) is a
tautology. So our goal is to prove tautologies.
Problem: we’ll need to build gigantic truth tables to check all possible
valuations.
Solution: valuations map syntax to semantics. Instead, stay in the
space of syntax. This means modifying the syntax of the formula
without modifying its semantics, until computing the valuation
becomes trivial.
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The language of logic

Symbols

Logic is about syntax and semantics

Syntax: how to manipulate symbols

Semantics: what meaning the symbols have

The use of these words is specific to logic!
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The language of logic

Syntax

Alphabet
Propositional symbols: p in a∨p
Constants: T and ⊥
Connectors: ¬ (1-place), ∧ (2-place), ∨ (2-place)...

Atomic formula: constants and connectors
Propositional formula

Atomic formula
If F is a formula, then (¬F ) is a formula
If • is a connector, and A and B are formulas, then (A•B) is a formula

The sets of atomic formulas and propositional formulas are the smallest
sets having these properties.

" None of those things above may be said to be "true" or "false". That
pertains to the semantics.
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The language of logic

Truth tables

A B A and B A or B A implies B
T T T T T
T F F T F
F T F T T
F F F F T

Each of these lines is a valuation of the logical propositions. It’s a mapping
of the symbols to "true" or "false".

How many 2-place connectors can I invent?

6 of the 2-place connectors are trivial, which ones?

What about 3-place connectors?
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The language of logic

Valuation

This is where semantics come into play. A valuation assigns "true" or
"false" to propositional symbols and to propositional formulas.
v : F → {True,False}

A valuation v must be consistent:

v(T)= True

v(⊥)= False

v(¬F )= Not v(F )

v((A • B))= v(A)■ v(B)

Syntax and semantics look very similar, so
we use different symbols to avoid
confusion.

Syntactic
connective •

Semantic
connective ■

¬ Not
∧ And
∨ Or
⊃ ⇒
⊂ ⇐
≡ ⇔
↑ Nand
↓ Nor
̸⊃ ̸⇒
̸⊂ ̸⇐
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The language of logic

Tautologies and satisfiability

A propositional formula X is a tautology if for any valuation v , v(X )= True

A tautology evaluates to True regarless of what its components evaluate to.

A set S of propositional formulas is satisfiable if some valuation v0 maps
every member of S to True: ∀X ∈ S , v0(X )= True

SAT problem: given S , find v0.

X is a tautology iff (¬X ) is not satisfiable.

Why do we need this? We will see later that proving a theorem is
equivalent to proving a tautology. (Specifically, proving S ⊢X is like
proving that (¬(S ∪ {¬X })) is a tautology.)
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The language of logic

Tautologies

Show that X is a tautology iff X ≡ T is a tautology
Show that X is a tautology iff T ⊃X is a tautology
Show that (¬(X ∧Y ))≡ (¬X ∨¬Y ) is a tautology
Show that (¬(X ∨Y ))≡ (¬X ∧¬Y ) is a tautology
Show that (P ∧ (Q∨R))≡ ((P ∧Q)∨ (P ∧R)) is a tautology
Show that (P ∨ (Q∧R))≡ ((P ∨Q)∧ (P ∨R)) is a tautology
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The language of logic

X is a tautology iff T ⊃X is a tautology

Let’s show that X is a tautology iff T ⊃X is a tautology.

First, notice that, for any valuation v :
v(T ⊃X )= v(T)⇒ v(X )= True ⇒ v(X )
Using a truth table, you can show that True ⇒ v(X ) is equal to v(X ).
So for any valuation v : v(T ⊃X )= v(X ).

Now let’s show that if X is a tautology then T ⊃X is a tautology:
Let v be a valuation. Then v(T ⊃X )= v(X )= True, the last equality being
a consequence of X being a tautology.

Now let’s show that if X is not a tautology then T ⊃X is not a tautology:
X is not a tautology so there exists a valuation u such that u(X )= False.
Consequently u(T ⊃X )= u(X )= False so T ⊃X is not a tautology.
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The language of logic

Logical consequence

Logical consequence: S |=X (read it as S semantically entails X )

If a valuation assigns True to all elements in S , then it will assign True to
X .

|=X means that X is a tautology.

This is closer to our use of logic: we’re only interested in the conclusions X
that we can derive from assumptions S that we know to be true.
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The language of logic

Logical consequence

Show that if S |=X then S ∪ {¬X } is not satisfiable. lab session
Show the reciprocal.
Ex falso quodlibet sequitur: Let S be a set of formulas, and A a
formula such that A ∈ S and (¬A) ∈ S . Show that ∀X ,S |=X

Conversely, if ∀X ,S |=X , show that S is not satisfiable.
Monotony: show that S |=X implies S ∪ {A} |=X lab session
Deduction: show that S ∪ {X } |=Y iff S |= (X ⊃Y ) lab session
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Automated theorem proving Problem statement

Problem

The goal of automated theorem proving is to show things like S |=X where
X is a theorem and S are a set of assumptions.

We saw that this is equivalent to proving that (¬(S ∪ {¬X })) is a tautology.

So our goal is to prove tautologies.

Problem: we’ll need to build gigantic truth tables to check all possible
valuations.

Solution: valuations map syntax to semantics. Instead, stay in the space of
syntax. This means modifying the syntax of the formula without modifying
its semantics, until computing the valuation becomes trivial.
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Automated theorem proving Problem statement

Replacement procedure

Define a procedure P such that if (X ≡Y ) is a tautology, then
P(X )≡P(Y ) is a tautology.

This is a syntactic rewriting that preserves the property of being a
tautology.
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Automated theorem proving Rewriting

Normal form for negation

A formula is in normal form for negation if the negation symbol ¬ only
occurs in front of symbols

(¬X ∨Y ) is in normal form for negation
(¬(X ∧Y )) is not

Use the following tautologies to rewrite negations:
(¬(¬X ))≡X
(¬(X ∨Y ))≡ ((¬X )∧ (¬Y ))
(¬(X ∧Y ))≡ ((¬X )∨ (¬Y ))
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Automated theorem proving Rewriting

Generalized disjunction/conjunction

Define two new operators, that don’t belong to the propositional language:

[X1,X2, ...,Xn] is the generalized disjunction of X1,X2, ...,Xn

For any valuation v , v([X1,X2, ...,Xn])= False iff ∀i ∈ [1,n], v(Xi )= False

v([])= False "X1 or X2 or ... or Xn"

<X1,X2, ...,Xn > is the generalized conjunction of X1,X2, ...,Xn

For any valuation v , v(<X1,X2, ...,Xn >)= True iff ∀i ∈ [1,n], v(Xi )= True

v(<>)= True "X1 and X2 and ... and Xn"
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Automated theorem proving Rewriting

Conjunctive normal form

Let F be a propositional formula. Its conjunctive normal form is a rewriting
of F as

<C1,C2, ...,Ci , ...,Cn >

where each Ci is of the form [X1,X2, ...,Xni ]. Ci is a clause.

The disjunctive normal form is the same thing mutandem mutandis.
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Automated theorem proving Rewriting

Conjunctive normal form

How do we get the conjunctive normal form? Use the following tautologies:

∧
¬(X ∧Y )≡¬X ∨¬Y

⊃
X ⊃Y ≡¬X ∨Y
¬X ⊃Y ≡X ∧¬Y

⊂
X ⊂Y ≡X ∨¬Y
¬X ⊂Y ≡¬X ∧Y

↑
X ↑Y ≡¬X ∨¬Y
¬X ↑Y ≡X ∧Y

∨
¬(X ∨Y )≡¬X ∧¬Y

↓
X ↓Y ≡¬X ∧¬Y
¬X ↓Y ≡X ∨Y

̸⊃
X ̸⊃Y ≡X ∧¬Y
¬X ̸⊃Y ≡¬X ∨Y

̸⊂
X ̸⊂Y ≡¬X ∧Y
¬X ̸⊂Y ≡X ∨¬Y
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Automated theorem proving Rewriting

Rewriting algorithm

Rewriting a disjunction:

Replace < ...[...P ...]... > with < ...[...A,B ...]... >

Rewriting a conjunction:

Replace < ...[...P ...]... > with < ...[...A...], [...B ...]... >

Rewriting a negation:

Replace < ...[...¬(¬P)...]... > with < ...[...P ...]... >
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Automated theorem proving Rewriting

Exercise

Conjunctive normal form of ((A⊃B)⊃ (A⊃C ))
(knowing that (X ⊃Y )≡ (¬X ∨Y ) and (¬(X ⊃Y ))≡ (X ∧¬Y ))

< [((A⊃B)⊃ (A⊃C ))]>
< [¬(A⊃B)∨ (A⊃C )]>
< [¬(A⊃B),(A⊃C )]>
< [(A∧¬B),(A⊃C )]>
< [A,(A⊃C )], [¬B ,(A⊃C )]>
< [A,(¬A∨C )], [¬B ,(A⊃C )]>
< [A,¬A,C ], [¬B ,(A⊃C )]>
< [A,¬A,C ], [¬B ,¬A,C ]>

Note that the first clause will always evaluate to True. So we can rewrite
the original formula as < [¬B ,¬A,C ]> without changing its truth value.
That’s a purely syntactic rewriting.

Nils Holzenberger LKR — Propositional Logic March 11, 2025 28 / 37



Automated theorem proving In Prolog

Proof by resolution

A sequence is a conjunction of lines
Each line is a generalized disjunction (a clause)
Growth of the sequence:

if a clause reads as [...(β1∨β2)...], insert a new line: [...β1,β2...]
if a clause reads as [...(α1∧α2)...], insert two new lines: [...α1...] and
[...α2...]
when adding new lines, replace ¬¬X by X , ¬T by ⊥ and ¬⊥ by T

Resolution: from lines [A,X ,B] and [C ,¬X ,D] create the line
[A,B ,C ,D], i.e. concatenate the lines leaving aside all occurrences of
X and of ¬X
a proof of X by resolution is a sequence starting with the [¬X ] line
(goal) and ending with an empty clause [].
X is a tautology if and only if X has a proof by resolution.
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Automated theorem proving In Prolog

Example

Prove ((A⊃B)∧ (B ⊃C ))⊃¬(¬C ∧A)
(knowing that (X ⊃Y )≡ (¬X ∨Y ) and (¬(X ⊃Y ))≡ (X ∧¬Y ))

[¬( ((A⊃B)∧(B ⊃C ))⊃¬(¬C∧A) )]

[((A⊃B)∧ (B ⊃C ))]
[¬C ∧A]

[(A⊃B)]
[(B ⊃C )]
[¬C ∧A]

[¬A,B]
[(B ⊃C )]
[¬C ∧A]

[¬A,B]
[¬B ,C ]
[¬C ∧A]

[¬A,B]
[¬B ,C ]
[¬C ]
[A]

[¬B ,C ]
[¬C ]
[B]

[¬C ]
[C ]

[]

Done. We
didn’t need a
truth table!
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Automated theorem proving In Prolog

Example in Prolog

A :- B turns into [A,¬B]

parent(marge, bart).

parent(clancy, marge).

grandparent(X,Y) :-

parent(X,Z),

parent(Z,Y).

?- grandparent(clancy,bart)

[parent(marge, marge)]

[parent(clancy, marge)]

[grandparent(X,Y), ¬ parent(X,Z),
¬ parent(Z,Y)]

[¬ grandparent(clancy,bart)]
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Axiomatics

⊢ vs Í

Logical consequence: S |=X

If a valuation assigns True to all elements in S , then it will assign True to
X .

|= is a semantic deduction, typically involving truth tables.

⊢ is a syntactic deduction, typically involving proof by resolution.
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Axiomatics

Theorem proving

An axiomatic system is a proof system. For example the Hilbert
system:

(X ⊃ (Y ⊃X ))
(X ⊃ (Y ⊃Z ))⊃ ((X ⊃Y )⊃ (X ⊃Z ))
(⊥⊃X )
(X ⊃ T)
(¬¬X ⊃X )
(X ⊃ (¬X ⊃Y ))
((A∧B)⊃A)
((A∧B)⊃B)
((A⊃X )⊃ ((B ⊃X )⊃ ((A∨B)⊃X )))

inference rule (modus ponens) : X (X⊃Y )
Y

This can be used to produce new theorems, through forward chaining
In contrast, proof by resolution is backward chaining
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Axiomatics

Soundness

Axiomatic systems define ⊢ and |=. An axiomatic system is sound if:

Let F be a propositional formula and S a set of propositional formulas.

If there is a sequence that derives from S ∪ {¬F } and that contains the
empty clause, then S |=F .

In other words if S ⊢F then S |=F .
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Axiomatics

Completeness

Axiomatic systems define ⊢ and |=. An axiomatic system is complete if:

Let F be a propositional formula and S a set of propositional formulas.

If S |=F , then there is a sequence that derives from S ∪ {¬F } and that
contains the empty clause.

Completeness is the converse of soundness: if S |=F then S ⊢F .
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Axiomatics

Gödel’s PhD thesis

Resolution is sound and complete for first-order logic
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