
PHILOSOPHY OF SCIENCE:
Machine Science

James Evans and Andrey Rzhetsky
Department of Sociology, University of Chicago, Chicago, IL 60637, USA.

Scientists today cannot hope to manually track all of the published science relevant to their
work. A cancer biologist, for instance, can find more than 2 million relevant papers in the
PubMed archive, more than 200 million Web pages with a Google search, and databases
holding results from experiments that produce millions of gigabytes of data.

This explosion of knowledge is changing the landscape of science. Computers already play
an important role in helping scientists store, manipulate, and analyze data. New capabilities,
however, are extending the reach of computers from analysis to hypothesis. Drawing on
approaches from artificial intelligence, computer programs increasingly are able to integrate
published knowledge with experimental data, search for patterns and logical relations, and
enable new hypotheses to emerge with little human intervention. Scientists have used such
computational approaches to repurpose drugs, functionally characterize genes, identify
elements of cellular biochemical pathways, and highlight essential breaches of logic and
inconsistency in scientific understanding. We predict that within a decade, even more
powerful tools will enable automated, high-volume hypothesis generation to guide high-
throughput experiments in biomedicine, chemistry, physics, and even the social sciences (1).

Proponents of data-driven science (2–4) conjecture that hypotheses are obsolete: New
knowledge will simply emerge from mechanical application of algorithms that mine data for
plausible patterns. This approach is attractive, but there are potential pitfalls. The discovery
of patterns from data alone is similar to the task faced by an explorer in an unfamiliar jungle,
without a guide. With no sense of what is already known about the environment or its perils,
she is likely to misclassify what she sees—fearing the intimidating but harmless snake;
ignoring the tiny lethal frog.

Recent research demonstrates how scientists can use computers to become better-informed
and more agile explorers. New computational tools can expand the pool of concepts and
relations used for generating automated hypotheses by (i) drawing more from the vast
corpus of published science, and (ii) synthesizing new higher- and lower-order concepts and
relations from the existing pool of knowledge. This approach can enable scientists studying
a particular natural system, such as a biochemical pathway, to identify and fill in missing
pieces, and traverse reasoning chains much longer than those possible with the unaided
mind. For example, researchers have used computation to increase the number of candidate
genetic aberrations considered in synthesizing hypotheses about disease (5–7). They have
also increased the number of potential biological activities involved in describing new gene
functions (8, 9) and ironed out past errors (10). Similarly, scientists have used computation
to increase the potential number of proteins and metabolites involved in biochemical
networks, and to generate predictions about which locations in those networks could be
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altered to improve health (11) and to identify elements misidentified as participating in a
network (12).

Merely increasing the pool of concepts and relations, however, would simply generate
multitudes of low-quality hypotheses. Scientists can profitably restrict that multitude by
using a selection process that draws on insights into the social, cultural, and cognitive
production of science. For example, Swanson pioneered the ABC model of hypothesis
generation, which focuses on hypotheses that cross boundaries between distinct scientific
literatures. If concepts A and B are studied in one literature, and B and C in another,
Swanson assumed transitivity to hypothesize that A implies C (see the figure and fig. S1).
He then demonstrated that novel A-to-C inferences were likely to be true, although unlikely
to be arrived at via other means (13–16). Through this approach, Swanson hypothesized that
fish oil could lessen the symptoms of Raynaud’s blood disorder and that magnesium deficits
are linked to migraine headaches. This heuristic relies on an implicit understanding of
scientific communities and publishing norms. It assumes that unpublished ideas within a
research community are less valuable than ideas that link seemingly unrelated communities.
Within a subfield, scientists are typically familiar with all of “their own” ideas, so
unpublished connections more likely represent negative knowledge—superficially plausible
ideas that participants know are wrong from experience. Unpublished ideas about subjects
(such as the role of particular molecules or genes) that cross subfield boundaries, however,
are much more likely to represent unasked questions. A recent analysis of biomolecules
common to several fields of biomedicine, for instance, suggests that many communities
could profit from generating predictions that bridge field boundaries and link disparate
properties of these molecules or other scientific concepts. (17).

Automated expansion of concepts and relations across community boundaries is severely
constrained by incompatibilities in the language used by different scientific communities
(18, 19). Because subfields have distinct histories, they often use different language to
express the same concept, or similar terms to refer to unrelated entities. If researchers could
computationally map these languages onto one another, as some are beginning to do with
medical terminologies (20), they could vastly increase the number of possible hypotheses.
Mapping concepts across languages would highlight parallels in theories from different
domains, as well as changes in meaning with time (semantic drift) and multiple meanings
(polysemy). These differences could be computationally mined to identify novel conceptual
linkages. By prioritizing hypotheses that contain concepts spanning existing scientific
theories, languages, and cultures, investigators could productively focus on the most novel
(21).

Analysts can also increase the pool of concepts and relations by computationally
synthesizing new concepts and relations from those previously published. Computers have
been deployed to “coarse grain” or identify new, higher-order aggregates of established
concepts within studies of biological pathways, medical syndromes, and social classes (22).
Scientists have also discovered new relations by identifying regular similarities between
existing elements (23, 24). They have efficiently constricted the vast number of possible
new aggregates by focusing on those that share physical properties or patterns, or integrate
components of a broader system, such as a particular disease.

In the past, computational approaches have been more successful in small, well-defined
systems than in larger, less studied, or more complex ones. The explosion of data from high-
throughput experiments, however, increasingly presents researchers with very complicated
systems. Facing these data with questions equal in scale and complexity will be critical
because, in the words of Mark Twain, “you can’t depend on your eyes when your
imagination is out of focus” (25).
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1. . Logical leaps
Scientific knowledge and concepts can be represented as jigsaw puzzle pieces that, with the
help of new computational tools, can be assembled into new hypotheses. In Swanson’s ABC
model, if the literature from one scientific subfield includes two concepts (A, red, and B,
yellow), and the literature from another subfield includes B and C (blue), then an analyst
may computationally infer that A and C are directly or indirectly related, potentially leading
to new hypotheses that cross subfield boundaries.
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